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 Markov Chain Sampling Methods for
 Dirichlet Process Mixture Models

 Radford M. NEAL

 This article reviews Markov chain methods for sampling from the posterior distri-
 bution of a Dirichlet process mixture model and presents two new classes of methods.
 One new approach is to make Metropolis-Hastings updates of the indicators specifying
 which mixture component is associated with each observation, perhaps supplemented
 with a partial form of Gibbs sampling. The other new approach extends Gibbs sampling
 for these indicators by using a set of auxiliary parameters. These methods are simple
 to implement and are more efficient than previous ways of handling general Dirichlet
 process mixture models with non-conjugate priors.

 Key Words: Auxiliary variable methods; Density estimation; Latent class models; Monte
 Carlo; Metropolis-Hasting algorithm.

 1. INTRODUCTION

 Modeling a distribution as a mixture of simpler distributions is useful both as a
 nonparametric density estimation method and as a way of identifying latent classes that

 can explain the dependencies observed between variables. Mixtures with a countably
 infinite number of components can reasonably be handled in a Bayesian framework
 by employing a prior distribution for mixing proportions, such as a Dirichlet process,
 that leads to a few of these components dominating. Use of countably infinite mixtures
 bypasses the need to determine the "correct" number of components in a finite mixture
 model, a task which is fraught with technical difficulties. In many contexts, a countably
 infinite mixture is also a more realistic model than a mixture with a small number of

 components.
 Use of Dirichlet process mixture models has become computationally feasible with

 the development of Markov chain methods for sampling from the posterior distribution
 of the parameters of the component distributions and/or of the associations of mixture

 components with observations. Methods based on Gibbs sampling can easily be imple-
 mented for models based on conjugate prior distributions, but when non-conjugate priors
 are used, as is appropriate in many contexts, straightforward Gibbs sampling requires
 that an often difficult numerical integration be performed. West, Miller, and Escobar
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 R. M. NEAL

 (1994) used a Monte Carlo approximation to this integral, but the error from using such
 an approximation is likely to be large in many contexts.

 MacEachem and Miller (1998) devised an exact approach for handling non-conjugate
 priors that uses a mapping from a set of auxiliary parameters to the set of parameters
 currently in use. Their "no gaps" and "complete" algorithms based on this approach are
 widely applicable, but somewhat inefficient. Walker and Damien (1998) applied a rather
 different auxiliary variable method to some Dirichlet process mixture models, but their
 method appears to be unsuitable for general use, as it again requires the computation of
 a difficult integral.

 In this article, I review this past work and present two new approaches to Markov
 chain sampling. A very simple method for handling non-conjugate priors is to use
 Metropolis-Hastings updates with the conditional prior as the proposal distribution. A
 variation of this method may sometimes sample more efficiently, particularly when com-
 bined with a partial form of Gibbs sampling. Another class of methods uses Gibbs
 sampling in a space with auxiliary parameters. The simplest method of this type is very
 similar to the "no gaps" algorithm of MacEacher and Muller, but is more efficient. This
 approach also yields an algorithm that resembles use of a Monte Carlo approximation to
 the necessary integrals, but which does not suffer from any approximation error.

 I conclude with a demonstration of the methods on a simple problem, which confirms

 that the new algorithms improve on the previous "no gaps" algorithm. Which of the
 several new algorithms introduced is best likely depends on the model and dataset to
 which they are applied. Further experience with these algorithms in a variety of contexts
 will be required to assess their relative merits.

 2. DIRICHLET PROCESS MIXTURE MODELS

 Dirichlet process mixture models go back to Antoniak (1974) and Ferguson (1983).
 [Note: Dirichlet process mixture models are sometimes also called "mixture of Dirichlet
 process models," apparently because of Antoniak's (1974) characterization of their poste-
 rior distributions. Since models are not usually named for the properties of their posterior

 distributions, this terminology is avoided here.] These models have recently been devel-

 oped as practical methods by Escobar and West (1995), MacEacher and Miller (1998),
 and others.

 The basic model applies to data yl,... , n which we regard as part of an indefinite
 exchangeable sequence, or equivalently, as being independently drawn from some un-
 known distribution. The yi may be multivariate, with components that may be real-valued
 or categorical. We model the distribution from which the yi are drawn as a mixture of
 distributions of the form F(0), with the mixing distribution over 0 being G. We let the
 prior for this mixing distribution be a Dirichlet process (Ferguson 1973), with concen-
 tration parameter a and base distribution Go (i.e., with base measure aGo). This gives
 the following model:

 Yi Oi F(0i)

 i | G - G (2.1)

 G DP(Go, a).

 Here, "X - S" means "X has the distribution S", so the right side is a specification of
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 SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS

 a distribution (e.g., N(tu, r2)), not of a density function. DP is the Dirichlet process, a
 distribution over distributions. Here and later, the obvious independence properties (e.g.,
 given the Oi, the yi are independent of each other and of G) are silently assumed.

 Often, the distributions F and Go will depend on additional hyperparameters not
 mentioned above, which, along with a, may be given priors at a higher level, as illustrated,

 for example, by Escobar and West (1998). The computational methods discussed in this
 article extend easily to these more complex models, as briefly discussed in Section 7.

 Since realizations of the Dirichlet process are discrete with probability one, these
 models can be viewed as countably infinite mixtures, as pointed out by Ferguson (1983).
 This is also apparent when we integrate over G in model (2.1), to obtain a representation
 of the prior distribution of the Oi in terms of successive conditional distributions of the
 following form (Blackwell and MacQueen 1973):

 i-l
 1 a

 Oi I OI,...oi-l i-l+ Z 6(03) + i-l+a Go. (2.2)
 j=l

 Here, 6(0) is the distribution concentrated at the single point 0. Notation of the form
 pR + (1-p)S, where R and S are distributions, represents the distribution that is the
 mixture of R and S, with proportions p and 1-p, respectively.

 Equivalent models can also be obtained by taking the limit as K goes to infinity of
 finite mixture models with K components having the following form:

 Yi ICi, I F((c,)

 ci Ip - Discrete(p,... ,pK) (2.3)
 (2.3)

 Xc Go
 p Dirichlet (a/K,...,a/K).

 Here, ci indicates which "latent class" is associated with observation yi, with the num-

 bering of the ci being of no significance. For each class, c, the parameters Xc determine
 the distribution of observations from that class; the collection of all such Xc is denoted

 by 0. The mixing proportions for the classes, p = (pI,... , pK), are given a symmetric
 Dirichlet prior, with concentration parameter written as a/K, so that it approaches zero
 as K goes to infinity.

 By integrating over the mixing proportions, p, we can write the prior for the ci as
 the product of conditional probabilities of the following form:

 P(ci = cl,...,ci-1)

 = P(cl,..., Ci-1, C = C) / P(cl,...,ci-1I) (2.4)

 _ Pc.. Pc,l Pc F(a) r(c/K)-K p(/K)-1 .p/K)-l dp
 (2.5)

 f PC, ... Pc,_ r(a) r(a/K)K p -1.. p/K)- dp
 ni,c + a/K (2.6)

 %i z~~~-l ~~~1 +a i(2.6) i-l+a

 where ni,c is the number of cj for j < i that are equal to c.
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 R. M. NEAL

 If we now let K go to infinity, the conditional probabilities in Equation (2.6), which
 define the prior for the ci, reach the following limits:

 ?i,c P(Ci = C | Ci,...,Ci-1) - i- c
 (2.7)

 P(ci # cj forall j<i cl,...,ci-1) -

 [Note: Some readers may be disturbed by the failure of countable additivity for these

 limiting probabilities, in which P(ci = cj for all j < i) > 0 even though P(ci = c) = 0
 for any specific c that is not equal to some Cj with j < i. However, the limiting distribution
 of the observable quantities (the yi), and the limiting forms of the algorithms based on
 this model, are both well defined as K goes to infinity.]

 Since the ci are significant only in so far as they are or are not equal to other Cj, the
 above probabilities are all that are needed to define the model. If we now let Oi = (,i
 we can see that the limit of model (2.3) as K - oo is equivalent to the Dirichlet process
 mixture model (2.1), due to the correspondence between the conditional probabilities for
 the Oi in Equation (2.2) and those implied by (2.7).

 I have previously used this limiting process to define a model which (unknown to me
 at the time) is equivalent to a Dirichlet process mixture (Neal 1992). This view is useful
 in deriving algorithms for sampling from the posterior distribution for Dirichlet process
 mixture models. Conversely, an algorithm for Dirichlet process mixture models will
 usually have a counterpart for finite mixture models. This is the case for the algorithms
 discussed in this article, though I do not give details of the algorithms for finite mixtures.

 Yet another way of formulating the equivalent of a Dirichlet process mixture model
 is in terms of the prior probability that two observations come from the same mixture

 component (equal to l/(1l+a) in the models above). This approach has been used by
 Anderson (1990, chap. 3) in formulating a model for use as a psychological theory of
 human category learning.

 3. GIBBS SAMPLING WHEN CONJUGATE PRIORS ARE USED

 Exact computation of posterior expectations for a Dirichlet process mixture model
 is infeasible when there are more than a few observations. However, such expectations
 can be estimated using Monte Carlo methods. For example, suppose we have a sample
 of T points from the posterior distribution for 0 = (01,..., 0n), with the tth such point

 being 0(t) = ((t),..., 0)). Then using Equation (2.2), the predictive distribution for a

 new observation, Yn+1, can be estimated by (1/T) T= F(0(t)), where (t) is drawn

 from the distribution (n+ca)-'1 EL 6(0(t)) + a(n+a)-lGo.
 We can sample from the posterior distribution of 0 = (01,... ,n) by simulating

 a Markov chain that has the posterior as its equilibrium distribution. The simplest such
 methods are based on Gibbs sampling, which when conjugate priors are used can be
 done in three ways.

 The most direct approach to sampling for model (2.1) is to repeatedly draw values
 for each Oi from its conditional distribution given both the data and the 0j for j i i
 (written as 0-i). This conditional distribution is obtained by combining the likelihood
 for Oi that results from yi having distribution F(Oi), which will be written as F(yi, Oi),
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 SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS

 and the prior conditional on O-i, which is

 i I 0-i , 1 E 6(0j) + + Go. (3.1)
 n-l+c\ n-S+ c ~

 This conditional prior can be derived from Equation (2.2) by imagining that i is the
 last of the n observations, as we may, since the observations are exchangeable. When
 combined with the likelihood, this yields the following conditional distribution for use
 in Gibbs sampling:

 i 0-i, Yi E qi,j 6(0) + riHi. (3.2)
 j7i

 Here, Hi is the posterior distribution for 0 based on the prior Go and the single observation

 yi, with likelihood F(yi, 0). The values of the qi,j and of ri are defined by

 qi,j = bF(yi,Oj) (3.3)

 ri = ba F(y,0)dGo(0), (3.4)

 where b is such that ZjAji qi,j + ri = 1. For this Gibbs sampling method to be feasible,
 computing the integral defining ri and sampling from Hi must be feasible operations.
 This will generally be so when Go is the conjugate prior for the likelihood given by F.

 We may summarize this method as follows:

 Algorithm 1. Let the state of the Markov chain consist of 0 = (01,...,On).
 Repeatedly sample as follows:

 * For i = 1,..., n: Draw a new value from Oi I 0-i, yi as defined by Equation (3.2).

 This algorithm was used by Escobar (1994) and by Escobar and West (1995). It
 produces an ergodic Markov chain, but convergence to the posterior distribution may be
 rather slow, and sampling thereafter may be inefficient. The problem is that there are
 often groups of observations that with high probability are associated with the same 0.
 Since the algorithm cannot change the 0 for more than one observation simultaneously,
 a change to the 0 values for observations in such a group can occur only rarely, as
 such a change requires passage through a low-probability intermediate state in which
 observations in the group do not all have the same 0 value.

 This problem is avoided if Gibbs sampling is instead applied to the model formulated
 as in (2.3), with the mixing proportions, p, integrated out. When K is finite, each Gibbs
 sampling scan consists of picking a new value for each ci from its conditional distribution

 given yi, the Xc, and the cj for j i (written as c_i), and then picking a new value for
 each 0c from its conditional distribution given the yi for which ci = c. The required
 conditional probabilities for ci can easily be computed:

 P(ci = c [ c-, Yi, 4) = bF(yi, c) n-ic + o/K (3.5) n-l+ 1 'a

 where rn-i, is the number of cj for j $ i that are equal to c, and b is the appropriate
 normalizing constant. This expression is found by multiplying the likelihood, F(yi, qc),
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 R. M. NEAL

 by the conditional prior, which is derived from Equation (2.6) by imagining that i is the
 last observation. (Note that the denominator n- +ca could be absorbed into b, but here
 and later it is retained for clarity.) The conditional distribution for Xc will generally be
 easy to sample from when the priors used are conjugate, and even when Gibbs sampling
 for Xc is difficult, one may simply substitute some other update that leaves the required

 distribution invariant. Note that when a new value is chosen for Xc, the values of Oi = (,
 will change simultaneously for all observations associated with component c.

 When K goes to infinity, we cannot, of course, explicitly represent the infinite
 number of ?c. We instead represent, and do Gibbs sampling for, only those Xc that are
 currently associated with some observation. Gibbs sampling for the ci is based on the
 following conditional probabilities (with ) here being the set of Xc currently associated
 with at least one observation):

 Ifc= Cj for some j$i: P(ci = c c_, yi, ) = b n_~i F(yi,q ) n-l+aC

 P(ci 5 cj for all j i c-i, i, () = b n +a F(,) dGo ()).
 (3.6)

 Here, b is the appropriate normalizing constant that makes the above probabilities sum
 to one. The numerical values of the ci are arbitrary, as long at they faithfully represent

 whether or not ci = cj-that is, the ci are important only in that they determine what
 has been called the "configuration" in which the data items are grouped in accordance
 with shared values for 0. The numerical values for the ci may therefore be chosen for
 programming convenience, or to facilitate the display of mixture components in some

 desired order. When Gibbs sampling for ci chooses a value not equal to any other cj, a
 value for 'c, is chosen from Hi, the posterior distribution based on the prior Go and the
 single observation yi.

 We can summarize this second Gibbs sampling method as follows:

 Algorithm 2. Let the state of the Markov chain consist of c = (cl,..., cn) and
 = (c : c E {ci,..., cn}). Repeatedly sample as follows:

 * For i = 1,..., n: If the present value of ci is associated with no other observation

 (i.e., n-i,i = 0), remove 0c, from the state. Draw a new value for ci from
 ci ] c-i, yi, 4 as defined by Equation (3.6). If the new ci is not associated with
 any other observation, draw a value for (0i from Hi and add it to the state.

 * For all c E {cl,..., Cn}: Draw a new value from Xc I all yi for which ci = c-
 that is, from the posterior distribution based on the prior Go and all the data points

 currently associated with latent class c.

 This is essentially the method used by Bush and MacEachem (1996) and later by
 West, Miiller, and Escobar (1994). As was the case for the first Gibbs sampling method,

 this approach is feasible if we can compute fF(yi, )) dGo(?) and sample from Hi, as
 will generally be the case when Go is the conjugate prior.

 Finally, in a conjugate context, we can often integrate analytically over the Xc,
 eliminating them from the algorithm. The state of the Markov chain then consists only of
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 SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS

 the ci, which we update by Gibbs sampling using the following conditional probabilities:

 If c=cj for some ji: P(ci = c c-, yi) = bn-i,c /F(yi,) dH-i,c() n-l+a

 P(ci = cj for all j=i c-i, i) = b + /F(yi,0) dGo(0).
 (3.7)

 Here, H-i,c is the posterior distribution of ? based on the prior Go and all observations
 yj for which j i and cj = c.

 This third Gibbs sampling method can be summarized as follows:

 Algorithm 3. Let the state of the Markov chain consist of c = (cl,..., n).
 Repeatedly sample as follows:

 * For i = 1,..., n: Draw a new value from ci c-i, Yi as defined by Equation (3.7).

 This algorithm is presented by MacEachem (1994) for mixtures of normals and by
 myself (Neal 1992) for models of categorical data.

 4. EXISTING METHODS FOR
 HANDLING NON-CONJUGATE PRIORS

 Algorithms 1 to 3 cannot easily be applied to models where Go is not the conjugate
 prior for F, as the integrals in Equations (3.4), (3.6), and (3.7) will usually not be
 analytically tractable. Sampling from Hi may also be hard when the prior is not conjugate.

 West, Muller, and Escobar (1994) suggested using either numerical quadrature or

 a Monte Carlo approximation to evaluate the required integral. If f F(yi, ) dGo ())
 is approximated by an average over m values for q drawn from Go, one could also
 approximate a draw from Hi, if required, by drawing from among these m points with
 probabilities proportional to their likelihoods, given by F(yi, )). Though their article is
 not explicit, it appears that West, Miller, and Escobar's non-conjugate example uses this
 approach with m = 1 (see MacEachem and Muller 1998).

 Unfortunately, this approach is potentially quite inaccurate. Often, Hi, the posterior
 based on yi alone, will be considerably more concentrated than the prior, Go, particularly
 when yi is multidimensional. If a small to moderate number of points are drawn from
 Go, it may be that none are typical of Hi. Consequently, the probability of choosing ci
 to be a new component can be much lower than it would be if the exact probabilities of
 Equation (3.6) were used. The consequence of this is not just slower convergence, since
 on the rare occasions when ci is in fact set to a new component, with an appropriate
 ( typical of Hi, this new component is likely to be discarded in the very next Gibbs
 sampling iteration, leading to the wrong stationary distribution. This problem shows that
 the usual Gibbs sampling procedure of forgetting the current value of a variable before
 sampling from its conditional distribution will have to be modified in any valid scheme
 that uses values for 0 drawn from Go.

 MacEacher and Muller (1998) presented a framework that does allow auxiliary
 values for q drawn from Go to be used to define a valid Markov chain sampler. I will
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 R. M. NEAL

 explain their idea as an extension of Algorithm 2 of Section 3. There, the numerical values
 of the ci were regarded as significant only in so far as they indicate which observations are

 associated with the same component. MacEacher and Miiller considered more specific
 schemes for assigning distributions to the ci, which serve to map from a collection of
 values for kc to values for the Oi. Many such schemes will produce the same distribution
 for the Oi, but lead to different sampling algorithms.

 The "no gaps" algorithm of MacEachern and Miller arises when the ci for i =
 1,..., n are required to cover the set of integers from 1 to k, with k being the number
 of distinct ci, but are not otherwise constrained. By considering Gibbs sampling in this
 representation, they derive the following algorithm:

 Algorithm 4. Let the state of the Markov chain consist of c = (cl,..., cn) and
 4) = (c : c E {c,..., ,cn}). Repeatedly sample as follows:

 * For i = 1,..., n: Let k- be the number of distinct cj for j t i, and let these
 cj have values in {1,..., k-}. If ci - cj for all j % i, then with probability
 k-/ (k- + 1) do nothing, leaving ci unchanged. Otherwise, label ci as k- + 1 if
 ci C cj for all j $ i, or draw a value for 4k-+l from Go if ci = cj for some
 j $ i. Then draw a new value for ci from {1,..., k- + 1} using the following
 probabilities:

 P(ci = c I c_, i, 1i ...I, k-+l)

 {bni,c F(yi, c) if 1 <c <k-

 b [a/(k- + 1)] F(yi, cc) if c = k- + 1

 where b is the appropriate normalizing constant. Change the state to contain only
 those qc that are now associated with an observation.

 * For all c E {cl,..., cn}: Draw a new value from qc I yi such that ci = c, or
 perform some other update to 5c that leaves this distribution invariant.

 This algorithm can be applied to any model for which we can sample from Go
 and compute F(yi, 0), regardless of whether Go is the conjugate prior for F. However,
 there is a puzzling inefficiency in the algorithm's mechanism for setting ci to a value

 different from all other cj-that is, for assigning an observation to a newly created
 mixture component. The probability of such a change is reduced from what one might
 expect by a factor of k- + 1, with a corresponding reduction in the probability of the
 opposite change. As will be seen in Section 6, a similar algorithm without this inefficiency
 is possible.

 MacEachem and Mtiller also developed an algorithm based on a "complete" scheme
 for mapping from the /c to the 0i. It requires maintaining n values for q0, which may be
 inefficient when k < n. The approach that will be presented in Section 6 allows more
 control over the number of auxiliary parameter values used.

 Another approach to handling non-conjugate priors was devised by Walker and
 Damien (1998). Their method avoids the integrals needed for Gibbs sampling, but requires
 instead that the probability under Go of the set of all 0 for which F(yi, 0) > u be
 computable, and that one be able to sample from Go restricted to this set. Although these
 operations are feasible for some models, they will in general be quite difficult, especially
 when 0 is multidimensional.
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 SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS

 Finally, Green and Richardson (in press) developed a Markov chain sampling method
 based on splitting and merging components that is applicable to non-conjugate models.
 Their method is considerably more complex than the others discussed in this article,
 since it attempts to solve the more difficult problem of obtaining good performance in
 situations where the other methods tend to become trapped in local modes that are not
 easily escaped with incremental changes. Discussion of this issue is beyond the scope of
 this article.

 5. METROPOLIS-HASTINGS UPDATES AND PARTIAL GIBBS
 SAMPLING

 Perhaps the simplest way of handling non-conjugate priors is by using the
 Metropolis-Hastings algorithm (Hastings 1970) to update the ci, using the conditional
 prior as the proposal distribution.

 Recall that the Metropolis-Hastings algorithm for sampling from a distribution for

 x with probabilities 7r(x), using a proposal distribution g(x*lx), updates the state x as
 follows:

 Draw a candidate state, x*, according to the probabilities g(x*lx). Compute the
 acceptance probability

 a(x*,x) = min 1, g(x lx) r(x*) (5.1)
 g(x*x) 7r(x)

 With probability a(x*,x), set the new state, x', to x*. Otherwise, let x' be the
 same as x.

 This update from x to x' leaves r invariant. When x is multidimensional, proposal
 distributions that change only one component of x are often used. Updates based on
 several such proposals, along with updates of other types, can be combined in order to
 construct an ergodic Markov chain that will converge to ir.

 This approach can be applied to model (2.3) for finite K, with the Pc integrated
 out, using Metropolis-Hastings updates for each ci in turn, along with Gibbs sampling
 or other updates for the c. When updating just ci, we can ignore those factors in the
 posterior distribution that do not involve ci. What remains is the product of the likelihood

 for observation i, F(yi, 0ci), and the conditional prior for ci given the other cj, which is

 P(ci = c ) = n- +/K (5.2) n-l1 + a

 where, as before, n-i,c is the number of cj for j h i that are equal to c. This can be
 obtained from Equation (2.6) by imagining that i is the last observation. If we now
 choose to use this conditional prior for ci as the proposal distribution, we find that this

 factor cancels when computing the acceptance probability of Equation (5.1), leaving

 - F(yi,Ic)-
 a(c*,ci) = min 1, (5.3)

 This approach continues to work as we let K -+ oc in order to produce an algorithm
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 for a Dirichlet process mixture model. The conditional prior for ci becomes

 n-i,c If c=c j for some j: P(ci =c l c-i) = n
 n~~+ 54(5.4)

 P(ci 5 cjfor all j c-) =
 n- 1 + a

 If we use this as the proposal distribution for an update to ci, we will need to draw an
 associated value for 0 from Go if the candidate, c*, is not in {cl,..., cn}. Note that if

 the current ci is not equal to any other cj, the probability of choosing c* to be the same
 as ci is zero-that is, when -ct is chosen to be different from the other cj it will always
 be a new component, not the current ci, even when that also differs from the other cj.
 (The method would be valid even if a new component were not created in this situation,

 but this is the behavior obtained by taking the K -+ oo limit of the algorithm for finite
 K.)

 We might wish to perform more than one such Metropolis-Hastings update for each
 of the ci. With this elaboration, the algorithm can be summarized as follows:

 Algorithm 5. Let the state of the Markov chain consist of c = (cl,..., cn) and
 ( = (c : c E {cl,..., Cn}). Repeatedly sample as follows:

 * For i = 1,..., n, repeat the following update of ci R times: Draw a candidate,
 c*, from the conditional prior for ci given by Equation (5.4). If this c' is not in
 {l,... ,cn}, choose a value for Xc from Go. Compute the acceptance proba-
 bility, a(c*, ci), as in Equation (5.3), and set the new value of ci to c? with this
 probability. Otherwise let the new value of ci be the same as the old value.

 * For all c E {cl,..., cn}: Draw a new value from 0c I Yi such that ci = c, or
 perform some other update to qc that leaves this distribution invariant.

 If R is greater than one, it is possible to save computation time by reusing values
 of F that were previously computed. An evaluation of F can also be omitted when c*
 turns out to be the same as ci. The number of evaluations of F required to update one
 ci is thus no more than R+1. For comparison, the number of evaluations of F needed
 to update one ci for Gibbs sampling and the "no gaps" algorithm is approximately equal
 to one plus the number of distinct cj for j 7 i.

 If the updates for the Xc in the last step of Algorithm 5 are omitted, the algorithm

 can be rephrased in terms of the Oi = 0ci, with the following result:

 Algorithm 6. Let the state of the Markov chain consist of 0 = (01,... ,n).
 Repeatedly sample as follows:

 * For i = 1,..., n, repeat the following update of Oi R times: Draw a candidate,
 O*, from the following distribution:

 1 Ca

 n- l+o C 6(03) + n-l+ G
 Compute the acceptance probabilitya

 Compute the acceptance probability

 a(O, Oi) = min[l, F(yi, 0i) / F(yi, i)].
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 Set the new value of Oi to 0* with this probability; otherwise let the new value
 of Oi be the same as the old value.

 This might have been justified directly as a Metropolis-Hastings algorithm, but the
 fact that the proposal distribution for 0 is a mixture of continuous and discrete distri-
 butions introduces conceptual, or at least notational, difficulties. Note that this algorithm
 suffers from the same problem of not being able to change several Oi simultaneously as
 was discussed for Algorithm 1.

 The behavior of the Metropolis-Hastings methods (Algorithms 5 and 6) differs sub-

 stantially from that of the corresponding Gibbs sampling methods (Algorithms 2 and 1)
 and the "no gaps" method (Algorithm 4). These other methods consider all mixture com-
 ponents when deciding on a new value for ci, whereas the Metropolis-Hastings method
 is more likely to consider changing ci to a component associated with many observa-
 tions than to a component associated with few observations. Also, the probability that the
 Metropolis-Hastings method will consider changing ci to a newly created component is
 proportional to a. (Of course, the probability of actually making such a change depends
 on a for all methods; here the issue is whether such a change is even considered.)

 It is difficult to say which behavior is better. Algorithm 5 does appear to perform
 adequately in practice, but since small values of a (around one) are often used, one might
 wonder whether an algorithm that could consider the creation of a new component more

 often might be more efficient.

 We can produce such an algorithm by modifying the proposal distribution for updates

 to the ci. In particular, whenever ci = cj for some j f i, we can propose changing ci to a
 newly created component, with associated q drawn from Go. In order to allow the reverse
 change, in which a component disappears, the proposal distribution for "singleton" ci

 that are not equal to any cj with j L i will be confined to those components that are
 associated with other observations, with probabilities proportional to n-i,. Note that
 when the current ci is not a singleton, the probability of proposing a new component is a

 factor of (n-l+a) / a greater than the conditional prior, while when ci is a singleton, the
 probability of proposing any existing component is a factor of (n-l+a) / (n-1) greater
 than its conditional prior. The probability of accepting a proposal must be adjusted by
 the ratio of these factors.

 On their own, these updates are sufficient to produce a Markov chain that is ergodic,

 as can be seen from the fact that there is a nonzero probability that a single scan of the data

 items will result in a state where every data item is associated with a different component.
 Such a chain would often sample inefficiently, however, since it can move an observation
 from one existing component to another only by passing though a possibly unlikely
 state in which that observation is a singleton. Such changes can be made more likely
 by combining these Metropolis-Hastings updates with partial Gibbs sampling updates,
 which are applied only to those observations that are not singletons, and which are
 allowed to change ci for such an observation only to a component associated with some
 other observation. In other words, these updates perform Gibbs sampling for the posterior
 distribution conditional on the set of components that are associated with at least one
 observation remaining the same as at present. No difficult integrations are required for
 this partial Gibbs sampling operation.

 Combining the modified Metropolis-Hasting updates, the partial Gibbs sampling up-
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 dates, and the usual updates to Xc for c E {cl,..., cn} produces the following algorithm:

 Algorithm 7. Let the state of the Markov chain consist of c = (l,..., cn) and
 0 = (?c : c E {c,., cn}). Repeatedly sample as follows:

 * For i = 1,..., n, update ci as follows: If ci is a not a singleton (i.e., ci = cj for
 some j ~ i), let c7 be a newly created component, with 0c* drawn from Go. Set

 the new ci to this c? with probability

 ao F(yi,0c*)- a(c*,ci) = min 1, ,
 _ n-I F(yi,(cj_

 Otherwise, when ci is a singleton, draw ci from c-i, choosing ci = c with
 probability n_i, / (n-1). Set the new ci to this c? with probability

 . n-1 F(yi, )c-)
 a(c, ci) min 1, y i

 If the new ci is not set to ci, it is the same as the old ci.
 * For i = 1,..., n: If ci is a singleton (i.e., ci 7 cj for all j 7 i), do nothing.
 Otherwise, choose a new value for ci from {cl,...,cn} using the following
 probabilities:

 P(ci = c I C-i, Yi, , Ci E {c1,...,Cn}) = b -i' F(yi, )c), n-i

 where b is the appropriate normalizing constant.

 * For all c E {cl,...,cn},: Draw a new value from c I yi such that ci = c, or
 perform some other update to qc that leaves this distribution invariant.

 6. GIBBS SAMPLING WITH AUXILIARY PARAMETERS

 In this section, I show how models with non-conjugate priors can be handled by
 applying Gibbs sampling to a state that has been extended by the addition of auxiliary
 parameters. This approach is similar to that of MacEacher and Muller (1998), but differs
 in that the auxiliary parameters are regarded as existing only temporarily; this allows more

 flexibility in constructing algorithms.

 The basic idea of auxiliary variable methods is that we can sample from a distribu-

 tion 7rx for x by sampling from some distribution 7rxy for (x, y), with respect to which
 the marginal distribution of x is 7rx. We can extend this idea to accommodate auxiliary
 variables that are created and discarded during the Markov chain simulation. The perma-
 nent state of the Markov chain will be x, but a variable y will be introduced temporarily
 during an update of the following form:

 1. Draw a value for y from its conditional distribution given x, as defined by 7rxy.
 2. Perform some update of (x, y) that leaves Trxy invariant.
 3. Discard y, leaving only the value of x.

 It is easy to see that this update for x will leave 7rx invariant as long as 7rx is the marginal

 distribution of x under 7rxy. We can combine several such updates, which may involve
 different auxiliary variables, along with other updates that leave Trx invariant, to construct

 a Markov chain that will converge to 7rx.
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 Figure 1. Representing the conditional prior distribution for a new observation using auxiliary parameters.
 The component for the new observation is chosen from among the four components associated with other
 observations plus three possible new components, with parameters, q5, 06, 07, drawn independently from Go.
 The probabilities used for this choice are shown at the top. The dashed arrows illustrate the possibilities of
 choosing an existing component, or a new component that uses one of the auxiliary parameters.

 We can use this technique to update the ci for a Dirichlet process mixture model
 without having to integrate with respect Go. The permanent state of the Markov chain
 will consist of the ci and the Xc, as in Algorithm 2, but when ci is updated, we will
 introduce temporary auxiliary variables that represent possible values for the parameters
 of components that are not associated with any other observations. We then update ci by
 Gibbs sampling with respect to the distribution that includes these auxiliary parameters.

 Since the observations yi are exchangeable, and the component labels ci are arbitrary,

 we can assume that we are updating ci for the last observation, and that the cj for other
 observations have values in the set {1,..., k-}, where k- is the number of distinct cj
 for j Z i. We can now visualize the conditional prior distribution for ci given the other cj
 in terms of m auxiliary components and their associated parameters. The probability of

 ci being equal to a c in {1,..., k-} will be n_i,c/(n-l+a), where n-i,c is the number
 of times c occurs among the cj for j = i. The probability of ci having some other value
 will be a/(n-l+ca), which we will split equally among the m auxiliary components we
 have introduced. Figure 1 illustrates this setup for m = 3.

 This representation of the prior gives rise to a corresponding representation of the
 posterior, which also includes these auxiliary parameters. The first step in using this
 representation to update ci is to sample from the conditional distribution of these auxiliary

 parameters given the current value of ci and the rest of the state. If ci = cj for some
 j $ i, the auxiliary parameters have no connection with the rest of the state, or the
 observations, and are simply drawn independently from Go. If ci $ cj for all j = i (i.e.,
 ci is a singleton), then it must be associated with one of the m auxiliary parameters.
 Technically, we should select which auxiliary parameter it is associated with randomly,
 but since it turns out to make no difference, we can just let ci be the first of these
 auxiliary components. The corresponding value for X must, of course, be equal to the
 existing 0ci. The X values for the other auxiliary components (if any, there are none if
 m = 1) are again drawn independently from Go.

 We now perform a Gibbs sampling update for ci in this representation of the pos-
 terior distribution. Since ci must be either one of the components associated with other
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 observations or one of the auxiliary components that were introduced, we can easily do
 Gibbs sampling by evaluating the relative probabilities of these possibilities. Once a new
 value for ci has been chosen, we discard all X values that are not now associated with
 an observation.

 This algorithm can be summarized as follows:

 Algorithm 8. Let the state of the Markov chain consist of c = (cl,..., cn) and
 ? = (bc : c E {cl,..., Cn}). Repeatedly sample as follows:

 * For i = 1,..., n: Let k- be the number of distinct cj for j i7 i, and let h = k-+m.
 Label these cj with values in {1,..., k- }. If ci = cj for some j 7 i, draw values
 independently from Go for those Xc for which k- < c < h. If ci = cj for all
 j : i, let ci have the label k- + 1, and draw values independently from Go for
 those Xc for which k- + 1 < c < h. Draw a new value for ci from {1,..., h}
 using the following probabilities:

 b n-ic F(yi, c) for 1<c< k-

 n-l+a

 P(ci = c | c-i, Yi, , ..., Oh) = am
 b l + F(yi, oc) for k- < c < h

 where n-i,c is the number of cj for j ~ i that are equal to c, and b is the
 appropriate normalizing constant. Change the state to contain only those Xc that
 are now associated with one or more observations.

 * For all c C {cl,..., cn}: Draw a new value from oc Yi such that ci = c, or
 perform some other update to Xc that leaves this distribution invariant.

 Note that the relabelings of the cj above are conceptual; they may or may not require
 any actual computation, depending on the data structures used.

 When m = 1, Algorithm 8 closely resembles Algorithm 4, the "no gaps" algorithm
 of MacEacher and Muller (1998). The difference is that the probability of changing
 ci from a component shared with other observations to a new singleton component is
 approximately k-+ 1 times greater with Algorithm 8, and the same is true for the reverse
 change. When a is small, this seems to be a clear benefit, since the probabilities for other
 changes are affected only slightly.

 In the other extreme, as m -+ oc, Algorithm 8 approaches the behavior of Algo-
 rithm 2, since the m (or m-1) values for 4c drawn from Go effectively produce a Monte

 Carlo approximation to the integral computed in Algorithm 2. However, the equilibrium
 distribution of the Markov chain defined by Algorithm 8 is exactly correct for any value
 of m, unlike the situation when a Monte Carlo approximation is used to implement
 Algorithm 2.

 7. UPDATES FOR HYPERPARAMETERS

 For many problems, it is necessary to extend the model to incorporate uncertainty
 regarding the value of a or regarding the values of other hyperparameters that determine
 F and Go. These hyperparameters can be included in the Markov chain simulation, as
 is briefly discussed here.

 262

This content downloaded from 
������������150.135.165.37 on Wed, 08 Mar 2023 17:30:09 UTC������������� 

All use subject to https://about.jstor.org/terms



 SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS

 The conditional distribution of a given the other parameters depends only on the
 number of distinct ci. It can be updated by some Metropolis-Hastings method, or by
 methods discussed by Escobar and West (1995). Alternatively, one can eliminate a from
 the model by integrating over it. As noted by MacEachern (1998), the moderate number
 of one-dimensional numerical integrations required for this can be done once, before the
 Markov chain simulation.

 If F depends on hyperparameters y, the conditional density for - given the current

 Oi will be proportional to its prior density times the likelihood, lni F(yi, i, 7)- If Go
 depends on hyperparameters t7, the conditional density for r1 given the current ci and

 qc will be proportional to its prior density times lc Go(qc, r), where the product is
 over values of c that occur in {cl,... ,cn}. Note that each such c occurs only once
 in this product, even if it is associated with more than one observation. The difficulty
 of performing Gibbs sampling or other updates for 7 and r will depend on the detailed
 forms of these conditional distributions, but no issues special to Dirichlet process mixture
 models are involved.

 One subtlety does arise when algorithms employing auxiliary > parameters are used.
 If ? values not associated with any observation are retained in the state, the conditional

 distribution for r given the rest of the state will include factors of Go(q, 77) for these
 > as well as for the 4 values associated with observations. Since this will tend to slow

 convergence, it is desirable to discard all unused 4 values, regenerating them from Go
 as needed, as is done for the algorithms in this article.

 8. A DEMONSTRATION

 I tested the performance of Algorithms 4 through 8 on the following data (Yl,..., Yg):

 -1.48, -1.40, -1.16, -1.08, -1.02, +0.14, +0.51, +0.53, +0.78

 A Dirichlet process mixture model was used with the component distributions having
 the form F(0) = N(0,0.12), the prior being Go = N(0, 1), and the Dirichlet process
 concentration parameter being a = 1. Although Go is in fact conjugate to F, the al-
 gorithms for non-conjugate priors were used. However, this conjugacy was exploited
 in Algorithms 4, 5, 7, and 8 in order to implement the Gibbs sampling step where a
 new value for Xc is drawn from its posterior distribution given the data associated with

 component c. If the prior used were not conjugate, this Gibbs sampling update might be
 more difficult, or might have to be replaced by a Metropolis update, or by some other
 update leaving the conditional distribution invariant.

 A state from close to the posterior distribution was found by applying 100 iterations
 of Algorithm 5 with R = 5. This state was then used to initialize the Markov chain for

 each of the algorithms, which were all run for 20,000 subsequent iterations (one iteration
 being one application of the operations in the descriptions given earlier).

 The performance of each algorithm was judged by the computation time per iteration
 and by the "autocorrelation time" for two quantities: k, the number of distinct ci, and
 01, the parameter associated with yl. The autocorrelation time for a quantity, defined as
 one plus twice the sum of the autocorrelations at lags one and up, is the factor by which
 the sample size is effectively reduced when estimating the expectation of that quantity,
 as compared to an estimate based on points drawn independently from the posterior
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 Table 1. Performance of the Algorithms Tested

 Time per iteration Autocorrelation Autocorrelation
 in microseconds time for k time for 01

 Alg. 4 ("no gaps") 7.6 13.7 8.5
 Alg. 5 (Metropolis-Hastings, R = 4) 8.6 8.1 10.2
 Alg. 6 (M-H, R = 4, no q update) 8.3 19.4 64.1
 Alg. 7 (mod M-H & partial Gibbs) 8.0 6.9 5.3
 Alg. 8 (auxiliary Gibbs, m = 1) 7.9 5.2 5.6
 Alg. 8 (auxiliary Gibbs, m = 2) 8.8 3.7 4.7
 Alg. 8 (m = 30, approximates Alg. 2) 38.0 2.0 2.8

 distribution (see Ripley 1987, sec. 6.3). It was estimated using autocorrelation estimates
 from the 20,000 iterations.

 The Metropolis-Hastings methods (Algorithms 5 and 6) were run with R, the num-
 ber of updates for each ci, set to 4. This makes the computation time per iteration
 approximately equal to that for the other methods tested. Gibbs sampling with auxiliary
 parameters (Algorithm 8) was tested with m = 1 and m = 2. It was also run with
 m = 30, even though this is clearly too large, because with a large value of m, this
 algorithm approximates the behavior of Algorithm 2 (apart, of course, from computa-
 tion time). This lets us see how much the autocorrelation times for the algorithms are
 increased over what is possible when the prior is conjugate.

 The results are shown in Table 1. They confirm that Algorithm 8 with m = 1 is
 superior to the "no gaps" method. Setting m = 2 decreases autocorrelation times further,
 more than offsetting the slight increase in computation time per iteration. The simple
 Metropolis-Hastings method (Algorithm 5) performs about as well as the "no gaps"
 method. The combination of Metropolis-Hastings and partial Gibbs sampling of Algo-
 rithm 7 performs about as well as Algorithm 8 with m = 1. As expected, performance
 is much worse when updates for the 0c are omitted, as in Algorithm 6.

 The results for Algorithm 8 with m = 30 show that there is a cost to using algorithms

 that do not rely on the prior being conjugate, but this cost is small enough to be tolerable

 when a non-conjugate prior is a more realistic expression of prior beliefs. Note that if
 Algorithm 2 were implemented for this model using analytic integration, the time per
 iteration would be roughly the same as for Algorithm 8 with a small value of m (ie,
 about nine microseconds), while the autocorrelation times would be about the same as

 those shown for Algorithm 8 with m = 30.
 Although Algorithm 8 with m = 1 can be seen to essentially dominate the "no gaps"

 method (Algorithm 4), due to its greater probability of changes involving singletons, the
 varying characteristics of Algorithms 5, 7, and 8, with various settings of R and m, are
 such that each algorithm can be expected to outperform the others on at least some data
 sets. The relative performance of the methods may also be affected by other aspects of
 the model, such as whether updates are also done for hyperparameters. The methods
 tested here are implemented in my software for flexible Bayesian modeling (the above
 results were obtained using the version of 1998-09-01). This software is available from
 my Web page (http://www.cs.utoronto.ca/~radford/), and can be used to experiment with
 these algorithms in conjunction with various models and datasets.
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