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Bayesian nonparametric methods: 

motivation and ideas 
Stephen G . Walker 

It is now possible to demonstrate many applications of Bayesian nonparametric methods. It 
works. It is clear, however, that nonparametric methods are more complicated to understand, 
use and derive conclusions from, when compared to their parametric counterparts. For 
this reason it is imperative to provide specific and comprehensive motivation for using 
nonparametric methods. This chapter aims to do this, and the discussions in this part 
are restricted to the case of independent and identically distributed (i.i.d.) observations. 
Although such types of observation are quite specific, the arguments and ideas laid out in 
this chapter can be extended to cover more complicated types of observation. The usefulness 
in discussing i.i.d. observations is that the maths is simplified. 

1.1 Introduction 
Even though there is no physical connection between observations, there is a real 
and obvious reason for creating a dependence between them from a modeling 
perspective. The first observation, say X 1, provides information about the unknown 
density f from which it came, which in tum provides information about the second 
observation X2, and so on. How a Bayesian learns is her choice but it is clear 
that with i.i.d. observations the order of learning should not matter and hence we 
enter the realms of exchangeable learning models. The mathematics is by now well 
known (de Finetti, 1937; Hewitt and Savage, 1955) and involves the construction 
of a prior distribution TT(d/) on a so:: ; · ;::1ce of density functions. The learning 
mechanism involves updating TT { d / . i ri ;ve, so that after n observations 
beliefs about fare now encapsulat::d ... · .· ~ ! ior distribution, given by 

. TT d X .. . X = ..J.J·:I j\XJ TT(d/) 
( fl I' ' n) f 11;1~-=I f( X;) TT(d/) 

and this in turn provides information about the future observation Xn+l via the 
predictive density 

f(Xn+1'X1, • • •, Xn) = f f(Xn+d TT(d/lX1, • • •, Xn), 
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From this it is eas: to see that the prior represents what has been learnt about the unknown density function without the presence of an f th b · . y o e o servat10ns. Dependmg on h~w much is known at this point, that is with no observations, the stre~gth of ~e pnor ranges from very precise with a lot of inf onnation, to so-called nomnfonnative or default priors which typically are so disperse that they are even improper (see e.g. Kass and Wassennan, 1996). 
This prior distribution is a single object and is a prior distribution on a suit-able space of density ( or equivalent) functions. Too many Bayesians think of the notion of a likelihood and a prior and this can be a hindrance. The fundamen-tal idea is the construction of random density functions, such as normal shapes, with random means and variances; or the infinite-dimensional exponential fam-ily, where probabilities are assigned to the infinite collection of random parame-ters. It is instructive to think of all Bayesians as constructing priors on spaces of density functions, and it is clear that this is the case. The Bayesian nonparamet-ri~ statistician is merely constructing random density functions with unrestricted shapes. 
This is achieved by modeling random density functions, or related functions such as distribution functions and hazard functions, using stochastic processes; Gaussian processes and independent increment processes are the two most commonly used. The prior is the law governing the stochastic process. The most commonly used is the Dirichlet process (Ferguson, 1973) which has sample paths behaving almost surely as a discrete distribution function. They appear most often as the mixing distribution generating random density functions: the so-called mixture of Dirichlet process model (Lo, 1984 ), which has many pages dedicated to it within this book. This model became arguably the most important prior for Bayesian nonparametrics with the advent of sampling based approaches to Bayesian inference, which arose in the late 1980s (Escobar, 1988). 
The outline of this chapter is as follows. In Section 1.2 we consider the impor-tant role that Bayesian nonparametrics plays. Ideas for providing information for nonparametr: - _: · r · ,_trn are also discussed. Section 1.3 discusses how many of the practices a' · .. :imensional activities of Bayesians can be carried out coherently under the 1. i • of the nonparametric model. The special case when the non-parametril: , .r is taken as the Bayesian bootstrap is considered. Section 1.4 discusses n. . c-rtance of asymptotic studies. Section 1.5 is a direct consequence of recent con7>1s1ency studies which put the model assumptions and true sampling assumptions at odds with each other. This section provides an alternative derivation of the Bayesian posterior distribution using loss functions; as such it is no less a rigorous approach to constructing a learning model than is the traditional approach using the Bayes theorem. So Section 1.5 can be thought of as ''food for thought." Finally, Section 1.6 concludes with a brief discussion. 
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1.2 Bayesian choices 
Many of the questions posed to the nonparametric methods are of the type "what if 
this and what if that?" referring to the possibility that the true density is normal or 
some other low-dimensional density and so using many parameters is going to be 
highly inefficient. In truth, it is these questions that are more appropriately directed 
to those who consistently use low-dimensional densities for modeling: "what if the 
model is not normal?" 

However, there was a time, and not so long ago, in fact pre-Markov chain Monte 
Carlo., when Bayesian methods were largely restricted to a few parametric models, 
such as the normal, and the use of conjugate prior distributions. Box and Tiao 
( 1973) was as deep as it got. It is therefore not surprising that in this environment, 
where only simple models were available, the ideas of model selection and model 
comparison took hold, for the want of something to do and a need to compare 
log-normal and Weibull distributions. Hence, such model assessments were vital, 
irrespective of any formal views one may have had about the theory of Bayesian 
methods (see Bernardo and Smith, 1994, Chapter 2). But it is not difficult to 
argue that Bayesian model criticism is unsound, and the word that is often used is 
incoherent. 

To argue this point, let us keep to the realm of independent and identically dis-
tributed observations. In this case, the prior distribution is a probability measure 
on a space of density functions. This is true for all Bayesians, even those rely-
ing on the normal distribution, in which case the Bayesian is putting probability 
one on the shape of the density function matching those of the normal family. 

There is more responsibility on the Bayesian: she gets more out in the form of a 
posterior distribution on the object of interest. Hence more care needs to be taken 
in what gets put into the model in the first place. For the posterior to mean anything 
it must be representing genuine posterior beliefs, solely derived by a combination 
of the data and prior beliefs via the use of the Bayes theorem. Hence, the prior used 
must genuinely represent prior beliefs (beliefs without data). If it does not, how can 
the posterior represent posterior beliefs? So a "prior" that has been selected post 
data via some check and test from a set of possible "prior" distributions cannot 
represent genuine prior beliefs. This is obvious, since no one of these "priors" 
can genuinely represent prior beliefs. The posterior distributions based on such a 
practice are meaningless. 

The prior must encapsulate prior beliefs and be large enough to accommodate 
all uncertainties. As has been mentioned before, years back prior distributions 
could not be enlarged to accommodate such problems, and the incoherence of 
model (prior) selection was adopted for pragmatic reasons, see Box (1980). How-
ever, nowadays, it is quite straightforward to build large prior distributions and to 
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ndertake prior to posterior analysis H . . 
I e enough so that no matter wh · ow large a pnor should be ~s a _clear matter. It 

is arg 1-0 may cases i·t . ·nJ . at subsequently occurs, the pnor 1s not checked. Hence, , 1s o y gomg to be . . . 
a nonparamemc model that 1s gomg to suffice. 

If a Bayesian has a prior distribuf . 
. . 100 and suspects there 1s additional uncertainty 

there are two possible actions 1be fl · . ' · rst 1s to consider an alternative prior and then Iect one or the other after the data h bee • • se . ave n observed. The second action 1s to 
enlarge the ~nor be_fore observing the data to cover the additional uncertainty. It is 
the latter action which is correct and coherent. 

Som~ Bayesians wou_Id argue that it is too hard a choice to enlarge the prior or 
work w~th nonparametric priors, particularly in specifying information or putting 
beliefs mto n~n~arametric priors. If this is the case; though I do not believe it to 
be true, then it is a matter of further investigation and research to overcome the 
difficulties rather than to lapse into pseudo-Bayesian and incoherent practices. 

To discuss the issue of pinning down a nonparametric prior we can if needed do 
this in a parametric frame of mind. For the nonparametric model one typically has 
two functions to specify which relate to µ 1(x) == Bf(x) and µ 2(x) = E/2(x). If it 
is possible to specify such functions then a nonparametric prior has typically been 
pinned down. 1\vo such functions are easy to specify. They can, for example, be 
obtained from ·a parametric model, even the normal, in which case one would take 

µ1(x) = f N(xl0, a 2)n(d0, da) 

µz(x) = f N2cxl0, a 2)n(d0, da), 

for some probability measure Jr ( d0, da ). The big difference now is that a Bayesian 
using this normal model, i.e. 

X ~ N(0, a 2) aq.d (0, a)~ n(0, a), 

would be restricted to normal shapes, whereas the nonparametric Bayesian, whose 
prior beliefs about µ,1 and µ,z, equivalently Ef(x) and Varf(x), coincide with the 
parametric Bayesian, has unrestricted shapes to work with. 

A common argument is that it is not possible to learn about all the parameters 
of a nonparametric model. This spectacularly misses the point. Bayesian inference 
is about being willing and able to specify all uncertainties into a prior distribution. 
If one does not like the outcome, do not be a Bayesian. Even a parametric model 
needs a certain amount of data to learn anything reasonable and the nonparametric 
model, which reflects greater starting uncertainty than a parametric model, needs 
more data to overcome the additional starting uncertainty. But it is not right to wish 
away the prior uncertainty or purposefully to underestimate it. 
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1.3 Decision theory 

Many of the Bayesian procedures based on incomplete priors (i.e. priors for Whi 
all uncertainty has not ~een t~en int~ _account) can be unde~aken coheren~~ 
(i.e. using a complete pnor) usmg dec1s1on theory. Any selection of parametric 
models can be done under the umbrel1a of the complete prior. This approach ma.Ic 
extensive use of the utility function for assessing the benefit of actions (such es 
model selection etc.) when one has presumed a particular value for the corre:s 
but unknown density ~~nc~ion. Let us consider an exampl~. Which specific densi~ 
from a family of dens1t1es mdexed by a parameter 0 E e 1s the best approximation 
to the data? 

If the parametric family of densities is {f (x; 0) }, then the first task is to choose a 
utility function which describes the reward in selecting 0, for the parameter space 
is the action space, when f is the true density. Basing this on a distance between 
densities seems appropriate here, so we can take 

u(f, 0) = -d(f(•; 0), f(,)). 

The prior is the nonparametric one, or the complete prior IT(df), and so making 
decisions on the basis of the maximization of expected utility, the choice of 0 is 0 
which maximizes 

Un(0) = - I d(f(•; 0), f(,)) IT(dflX1, ... , ~n)-

An interesting special case arises when we take d to be based on the Kullback-
Leibler divergence; that is d (g, f) = f g log(g / f) in which case we would choose ...... 
0 to maximize 

0n(0) = f 1og f(x; 0) fn(dx) 

where fn is the nonparametric predictive density, given by 

J.(x) = f f(x) TT(dflX1, ... , X.). 

Furthermore, taking IT(df) to be the Bayesian bootstrap (Rubin, 1981), so that fn 
is the density with point mass I/ n at each of the data points, then 

n 

0n(0) = n-1 I)ogf(X;;0) 
i=l 

and so 0 is the maximum likelihood estimator. 
There are many other types of lower dimensional decisions that can be made 

under the larger prior/posterior; see Gutierrez-Pena and Walker (2005). As an 
example, suppose it is required to construct a probability on 8 space when the true 
posterior is TT(df IX1 , ... , Xn)- It is necessary to link up a random f from this 

' 
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posterior with a random 0 from e space. This can be done by taking 0 to maximize 
u(f, 0). An interesting special case arises when the posterior is once again taken to 
be the Bayesian bootstrap in which case we can take 

n 

fn(dx) = L Wi 8x;(d.x), 
i=l 

where the (w1, • • ·, Wn) are from a Dirichlet distribution ~ith parameters all equal 
to 1. Therefore, a distribution on 8 space can be obtained by repeated simulation 
of the weights from the Dirichlet distribution and taking 0 to maximize 

n 

L wi log f (Xi; 0). 
i=l 

This is precisely the weighted likelihood bootstrap approach to Bayesian inference 
proposed by Newton and Raftery (1994). 

To set up the scene for the next section, let us note that if a Bayesian is making 
such assessments on utilities, in order to undertake decision theory, then she must 
be willing to think about the true density function and that this comes from a set 
of possibilities. How is it possible to make such judgments while having discarded 
the notion of a true density function? 

1.4 Asymptotics 
Traditionally, Bayesians have shunned this aspect of statistical inference. The prior 
and data yield the posterior and the subjectiveness of this strategy does not need the 
idea of what ha !-';'~ns if further data arise. Anyway, there was the theorem of Doob 
( 1949), but like -· 1i.ir r Bayesian computations from the past, this theorem involves 
assuming that ! · · 1inal distribution of the observations depends explicitly on 
and is fully spe.,. ,_:y the chosen prior distribution, that is 

n 

p(X 1, ... , Xn) = f n /(X;) IT(df). 
i=l 

It is unrealistic to ·undertake asymptotic studies, or indeed any other Bayesian 
studies, based on this assumption, since it is not true. Doob's theorem relies on this 
assumption. Even though one knows that this model is mathematically incorrect, it 
does serve as a useful learning model, as discussed earlier. 

On the other hand, it is correct to assume the observations are independent and 
identically distributed from some true density function Jo and to undertake the 
mathematics on this assumption. One is then asking that the posterior distribution 
accumulates in suitable neighborhoods of this true density function. 
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This exposes the Bayesian model as being quite different from the correct as-
sumption. There is no conflict here in the discrepancy bet~een the true assumption 
and the model assumption. The Bayesian model is about learning from observations 
in a way that the order in which they arrive does not matter (exchangeability). The 
first observation provides information about the true density function and this in 
turn provides information about the second observation and so on. The Bayesian 
writes down how this learning is achieved and specifically how an observation pro-
vides information about the true density function. In this approach one obviously 
needs to start with initial or prior information about the true density function. 

In short, the Bayesian believes the data are i.i.d. from some true density function 
f O and then writes down an exchangeable learning model as to how they see the 
observations providing information about Jo. 

So why is consistency important? The important point is that the prior, which 
fully specifies the learning model, is setting up the learning model. In a way it is 
doing two tasks. One is representing prior beliefs, learnt about Jo before or without 
the presence of data, and the second is fully specifying the learning model. It is this 
latter task that is often neglected by subjective Bayesians. 

Hence, the learning part of the m9del needs to be understood. With an unlimited 
amount of data the Bayesian must expect to be able to pin down the density 
generating her observations exactly. It is perfectly reasonable to expect that as data 
arrive the learning is going in the right direction and that the process ends up at f o-
If it does not then the learning model (prior) has not been set well, even though the 
prior might be appropriate as representing prior beliefs. 

The basic idea is to ensure that 

TI(d(J, Jo)> EIX1, ... , Xn) 0 a.s. Fo 
where d is some measure of distance between densities. It is typically taken to be 
the Hellinger distance since this favors the mathematics. Conditions are assigned 
to TI to ensure this happens and involve a support condition and a further condition 
which ensures that the densities which can track the data too closely are given 
sufficiently low prior mass, see Chapter 2. 

However, an alternative "likelihood," given by 

n 

z~a) = TT J(Xit 
i=l 

for any O < a < 1 yields Hellinger consistency with only a support condition. Can 
this approach be justified? It possibly can. For consider a cumulative loss function 
approach to posterior inference, as in the next section. 

I 
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The Dirichlet process, related priors 

and posterior asymptotics 
Subhashis Ghosal 

Here we review the role of the Dirichlet process and related prior distribtions in nonpara-
metric Bayesian inference. We discuss construction and various properties of the Dirichlet 
process. We then review the asymptotic properties of posterior distributions. Starting with 
the definition of posterior consistency and examples of inconsistency, we discuss general 
theorems which lead to consistency. We then describe the method of calculating posterior 
convergence rates and briefly outline how such rates can be computed in nonparametric 
examples. We also discuss the issue of posterior rate adaptation, ~ayes factor consistency 
in model selection and Bernshtefo-von Mises type theorems for nonparametric problems. 

2.1 Introduction 

Making inferences from observed data requires modeling the data-generating mech-
anism. Often, owing to a lack of clear knowledge about the data-generating mech-
anism, we can only make very general assumptions, leaving a large portion of the 
mechanism unspecified, in the sense that the distribution of the data is not speci-
fied by a finite number of paraici:,k ,:,. Such nonparametric models guard against 
possible gross misspecification c.i the data-generating mechanism, and are quite 
popular, especially when adequate amounts of data can be collected. In such cases, 
the parameters can be best described by functions, or some infinite-dimensional ob-
jects, which assume the role of parameters. Examples of such infinite-dimensional 
parameters include the cumulative distribution function (c.d.f.), density function, 
nonparametric regression function, spectral density of a time series, unknown link 
function in a generalized linear model, transition density of a Markov chain and so 
on. The Bayesian approach to nonparametric inference, however, faces challenging 
issues since construction of prior distribution involves specifying appropriate prob-
ability measures on function spaces where the parameters lie. Typically, subjective 
knowledge about the minute details of the distribution on these infinite-dimensional 
spaces is not available for nonparametric problems. A prior distribution is generally 
chosen based on tractability, computational convenience and desirable frequentist 

35 
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behavior, except that some key parameters of the prior may be chosen subjectively. 
In particular, it is desirable that a chosen prior is spread all over the parameter space, 
that is, the prior has large topological support. Together with additional conditions, 
large support of a prior helps the corresponding posterior distribution to have good 
frequentist properties in large samples. To study frequentist properties, it is assumed 
that there is a true value of the unknown parameter which governs the distribution 
of the generated data. 

We are interested in knowing whether the posterior distribution eventually con-
centrates in the neighborhood of the true value of the parameter. This property, 
known as posterior consistency, provides the basic frequentist validation of a 
Bayesian procedure under consideration, in that it ensures that with a sufficiently 
large amount of data, it is nearly possible to discover the truth accurately. Lack 
of consistency is extremely undesirable, and one should not use a prior if the cor-
responding posterior is inconsistent. However, consistency is satisfied by many 
procedures, so typically more effort is needed to distinguish between consistent 
procedures. The speed of convergence of the posterior distribution to the true value 
of the parameter may be measured by looking at the smallest shrinking ball around 
the true value which contains posterior probability nearly one. It will be desirable 
to pick up the prior for which the size of such a shrinking ball is the minimum 
possible. However, in general it is extremely hard to characterize size exactly, so 
we shall restrict ourselves only to the rate at which a ball around the true value can 
shrink while retaining almost all of the posterior probability, and call this the rate 
of convergence of the posterior distribution. We shall also discuss adaptation with 
respect to multiple models, consistency for model selection and Bernshtezn-von 
Mises theorems. 

In the following sections, we describe the role of the Dirichlet process and 
some related prior distributions, and discuss their most important properties. We 
shall then discuss results on convergence of posterior distributions, and shall often 
illustrate results using priors related to the Dirichlet process. At the risk of being less 
than perfectly precise, we shall prefer somewhat informal statements and informal 
arguments leading to these results. An area which we do not attempt to cover 
is that of Bayesian survival analysis, where several interesting priors have been 
constructed and consistency and rate of convergence results have been derived. We 
refer readers to Ghosh and Ramamoorthi (2003) and Ghosal and van der Vaart 
(2010) as general references for all topics discussed in this chapter. 

2.2 The Dirichlet process 
2.2 .. 1 Motivation 

We begin with the simplest nonparametric inference problem for an uncountable 
sample space, namely, that of estimating a probability measure (equivalently, a 
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c.d.f.) on the real line, with independent and identically distributed (i.i.d.) obser-
vations from it, where the c.d.f. is completely arbitrary. Obviously, the classical 
estimator, the empirical distribution function, is well known and is quite satisfac-
tory. A Bayesian solution requires describing a random probability measure and 
developing methods of computation of the posterior distribution. In order to under-
stand the idea, it is fruitful to look at the closest parametric relative of the problem, 
namely the multinomial model. Observe that the multinomial model specifies an 
arbitrary probability distribution on the sample space of finitely many integers, 
and that a multinomial model can be derived from an arbitrary distribution by 
grouping the data in finitely many categories. Under the operation of grouping, the 
data are reduced to counts of these categories. Let (rr1, ... , rrk) be the probabilities 
of the categories with frequencies n 1, . • . , n k. Then the likelihood is proportional 
to rr~ 1 

• • • rr;k. The form of the likelihood matches with the form of the finite-
dimensional Dirichlet prior, which has density t proportional to rrf1- 1 ... rr{k- 1. 

Hence the posterior density is proportional to rr~i+ci-l ... rr;k+Ck-1, which is again 
a Dirichlet distribution. 

With this nice conjugacy property in mind, Ferguson (1973) introduced the idea 
of a Dirichlet process - a probability distribution on the space of probability mea-
sures which induces finite-dimensional Dirichlet distributions when the data are 
grouped. Since grouping can be done in many different ways, reduction to a finite-
dimensional Dirichlet distribution should hold under any grouping mechanism. In 
more precise terms, this means that for any finite measurable partition {B1, ... , Bk} 
of IR, the joint distribution of the probability vector (P(B1), . .. , P(Bk)) is a finite-
dimensional Dirichlet distribution. This is a very rigid requirement. For this to 
be true, the parameters of the finite-dimensional Dirichlet distributions need to be 
very special. This is because the joint distribution of (P(B1), ... , P(Bk)) should 
agree with other specifications such as those derived from the joint distribution 
of the probability vector ( P ( A 1), ... , P (Am)) for another partition { A 1, ... , Am} 
finer than {B1, ••• , Bk} , since any P(B;) is a sum of some P(Aj) , A basic prop-
erty of a finite-dimensional Dirichlet distribution is that the sums of probabilities 
of disjoint chunks again give rise to a joint Dirichlet distribution whose parame-
ters are obtained by adding the parameters of the original Dirichlet distribution. 
Letting cx(B) be the parameter corresponding to P(B) in the specified Dirichlet · 
joint distribution, it thus follows that a(•) must be an additive set function. Thus 
it is a prudent strategy to let a actually be a measure. Actually, the countable 
additivity of ex will be needed to bring in countable additivity of the random P 
constructed in this way. The whole idea can be generalized to an abstract Polish 
space. 

t B.... r h • · ,~ k . _ I the density has to be interpreted us that of the first k - I components. ... ause o I e restnction L... i= l rc, - , -
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Definition 2.1 Let a be a finite measure on a given Polish space X. A random 
measure P on X is called a Dirichlet process if for every finite measurable partition 
{B1, ... , Bk} of X, the joint distribution of (P(B1), ... , P(Bk)) is a k-dimensional 
Dirichlet distribution with paramaeters a(B1), ... , a(Bk)-

We shall call a the base measure of the Dirichlet process, and denote the Dirichlet 
process measure by Va. 

Even for the case when a is a measure so that joint distributions are consistently 
specified, it still remains to be shown that the random set function P is a probability 
measure. Moreover, the primary motivation for the Dirichlet process was to exploit 
the conjugacy under the grouped data setting. Had the posterior distribution been 
computed based on conditioning on the counts for the partitioning sets, we would 
clearly retain the conjugacy property of finite-dimensional Dirichlet distributions. 
However, as the full data are available under the setup of continuous data, a gap 
needs to be bridged. We shall see shortly that both issues can be resolved positively. 

2.2.2 Construction of the Dirichlet process 
Naive construction 

At first glance, because joint distributions are consistently specified, viewing P 
as a function from the Borel a-field 86 to the unit interval, a measure with the 
specified marginals can be constructed on the uncountable product space [0, l]-19 
with the help of Kolmogorov's consistency theotem. Unfortunately, this simple 
strategy is not very fruitful for two reasons. First, the product a-field on [0, l]-19 is 
not rich enough to contain the space of probability measures. This difficulty can 
be avoided by working with outer measures, provided that we can show that P is 
a.s. countably additive. For a given sequence of disjoint sets An, it is indeed true 
that P(U~1 An) = r:_:1 P(An) a.s. Unfortunately, the null set involved in the a.s. 
statement is dependent on the sequence An, and since the number of such sequences 
is uncountable, the naive strategy using the Kolmogorov consistency theorem fails 
to deliver the final result. · 

Construction using a countable generator 
To save the above construction, we need to work with a countable generating field 
§ for 86 and view each probability measure Pas a function from§ to [0, l]. The 
previously encountered measure theoretic difficulties do not arise on the countable 
product [0, 1 ]§. 

Construction by normalization 
There is another construction of the Dirichlet process which involves normalizing 
a gamma process with intensity measure a. A gamma process is an independent 
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increment process whose existence is known from the general theory of Levy 
processes• Th~ gamma ~ro_ces~ representation of the Dirichlet process is particularly 
useful for findmg the distnbuti?~ of the mean functional of P and estimating of the 
tails of P when P follows a Dmchlet process on IR. 

2.2.3 Properties 
Once the Dirichlet process is constructed, some of its properties are immediately 
obtained. 

Moments and marginal distribution · 
Considering the partition {A, Ac}, it follows that P (A) is distributed as 
Beta(a(A), a(Ac)). Thus in particular, E(P(A)) = a(A)/(a(A) + a(Ac)) = G(A), 
where G(A) = a(A)/ M, a probability measure and M = a(R), the total mass of 
a. This means that if XI P ~ P and P is given the measure 7J a, then the marginal 
distribution of X is G. We shall call G the center measure. Also, observe that 
Var(P(A)) = G(A)G(Ac)/(M + 1), so that the prior is more tightly concentrated 
around its mean when M is larger, that is, the prior is more precise. Hence the pa-
rameter M can be regarded as the precision parameter. When P is distributed as the 
Dirichlet process with base measure a = MG, we shall often write P ~ DP(M, G). 

Linear functionals 

If v, is a G-integrable function, then E(f v,dP) = . J v,dG. This holds for indicators 
from the relation E(P(A)) = G(A), and then standard measure theoretic arguments 
extend this sequentially to simple measurable functions, nonnegative measurable 
functions and finally to all integrable functions. The distribution of J v,dP can 
also be obtained analytically, but this distribution is substantially more complicated 
than beta distribution followed by P(A). The derivation involves the use of a lot 
of sophisticated machinery. Interested readers are referred to Regazzini, Guglielmi 
and Di Nunno (2002), Hjort and Ongaro (2005), and references therein. 

Conjugacy 

Just as the finite-dimensional Dirichlet distribution is conjugate to the multinomial 
likelihood, the Dirichlet process prior is also conjugate for estimating a completely 
unknown distribution from i.i.d. data. More precisely, if X 1, ... , Xn are i.i.d. with 
distribution p and p is given the prior Va, then the posterior distribution of P 
given X 1, •• • , Xn is 1) a+ I:?,,,i h •. t To see this, we need to show that for any measur-
able finite partition { A 1, ... , A~}, the posterior distribution of ( P ( A 1), ... , P ( Ak)) . 

t Of course, there are other versions of the posterior distribution which can ditl'er on a null set for the joint 
distribution. 
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given X1, ... , Xn is k-dimensional Dirichlet with parameters a(Aj) + Nj, where 
Ni = L7=1 ll{Xi E Ai}, the count for Aj, j = 1, ... , k. This certainly holds by the 
conjugacy of the finite-dimensional Dirichlet prior with respect to the multinomial 
likelihood had the data been coarsened to only the counts N1, ... , Nk, Therefore 

' the result will follow if we can show that the additional information contained 
in the original data X 1, ... , X n is irrelevant as far as the posterior distribution of 
(P(A1), ... , P(Ak)) is concerned. One can show this by first considering a par-
tition {B1, ... , Bm} finer than {A1, ... , Ak}, computing the posterior distribution 
of (P(B1), ... , P(Bm)) given the counts of {B1, ... , Bm}, and marginalizing to 
the posterior distribution of (P(A1), ... , P(Ak)) given the counts of {B1, ... , Bm}. 
By the properties of finite-dimensional Dirichlet, this coincides with the posterior 
distribution of (P(A1), ... , P(Ak)) given the counts of {A1, ... , Ak}, Now making 
the partitions infinitely finer and applying the martingale convergence theorem, the 
final result is obtained. 

Posterior mean 

The above expression for the posterior distribution combined with the formula for 
the mean of a Dirichlet process imply thatthe posterior mean of P given X 1, ... , Xn 
can be expressed as 

- M n 
1Pn = E(P IX1 , . . . , Xn) = --G + --1Pn, (2.1) 

M +n M+n 

a convex combination of the prior mean bnd the empirical distribution. Thus the 
posterior mean essentially shrinks the empirical distribution towards the prior mean. 
The relative weight attached to the prior is proportional to the total mass M, giving 
one more reason to call M the precision parameter, while the weight attached to the 
empirical distribution is proportional to the number of observations it is based on. 

Limits of the posterior 

When n is kept fixed, letting M 0 may be regarded as making the prior impre-
cise or noninformative. The limiting posterior, namely 'DI:.;=

1 
fix;, is known as the 

Bayesian bootstrap. Samples from the Bayesian bootstrap are discrete distributions 
supported .at only the observation points whose weights are distributed according 
to the Dirichlet distribution, and hence the Bayesian bootstrap can be regarded 
as a resampling scheme which is smoother than Efron's bootstrap. On the other 
hand, when M is kept fixed and n varies, the asymptotic behavior of the poste-
rior mean is entirely controlled by that of the empirical distribution. In particular, · 
the c.d.f. of Ji\ converges uniformly to the c.d.f. of the true distribution Po and 
.Jii{IP n - Po) converges weakly to a Brownian bridge process. Further, for any 
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set A, the posterior variance of P(A) is.easily seen t b O( -1 

b h , · 1. • . · · · 0 e n ) as.n oo Hence 
Che ys ev s mequa 1ty 1mphes that the posterio d' t 'b · · . . . · - · · r is n ution of P(A) approaches 
the degenerate d1stnbut1on at Po(A)- that is the t · d' • . . ' ·· · .,- pos enor 1stnbut1on of P(A) is 
consistent at Po, and the rate of this convergence is n-112 Sh 1 . . . . - . ort y, we shall see that 
the entire postenor of P is also consistent at-Po. 

lAck of smoothness 
The pres~nce ~f the point masses .8 X; in the .base measure of the posterior Dirichlet 
process gives nse to some peculiar behavior .. One such property is the total disregard 
of the t~pology of the s~ple space. For inst~mce, if A is a set such that many 
observations fall close to it but A itself does,11ot contain any observed point, then 
the posterior mean of P(A) is smaller than its prior mean. Thus the presence of 
observations in the vicinity does-not enhance the assessment of the probability of 
a set unless the observations are actually con.t:ah1ed there. Hence it is clear that the 
Dirichlet process is somewhat primitive: in that it does not offer any smoothing, 
quite unlike the characteristic of a Bayes.estimator. 

Negative C(}~re_lation 
Another peculiar property of the Dirichletprocess is negative correlation between 
probabilities of any two disjoint sets. For a ral\dom probability distribution, one may 
expect that the masses assigned to nearby places_ increase or decrease together, so the 
blanket negative corrdation attached by the.D,irichlet process may be disappointing. 
This again demonstr,,:~s that the topology.of.the underlying space is not considered 
by the Dirichlet process in its mass assignment. 

Discre,t(!ness 

A very intriguing property of the Dirichlet process is the discreteness of the distri-
butions sampled from it, even when G is _purely nonatomic. This property also has 
its roots in the expression for the posterior of _a Dirichlet process. To see why this 
is so, observe that a distribution P is discrete if and only if P(x : P {x} > 0) = 1. 
Now, considering the model XI P ~ P and P given Va measure, the property 
holds if 

(Va x P){(P, x): P{x} > 0} = 1. (2.2) 

The assertion is equivalent to 

(G x VaHJ{(x, P): P{x} > 0} = 1 (2.3) 

as G is the marginal of X and-the conditional distribution of PIX is VaHx· The 
last relation holds, since the presence ~t the atom at x in the base measure of 
the posterior Dirichlet process ensures that almost .all random P sampled from 
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the posterior process assigns positive mass to the point x • Thus the discreteness 
property is the consequence of the presence of an atom at the observation in the 
base measure of the posterior Dirichlet process. 

The discreteness property of the Dirichlet process may be disappointing if one's 
perception of the true distribution is nonatomic, such as when it has a density. 
However, discreteness itself may not be an obstacle to good convergence properties 
of estimators, considering the fact that the empirical distribution is also discrete but 
converges uniformly to any true distribution. 

Support 

Even though only discrete distributions can actually be sampled from a Dirichlet 
process, the topological support of the Dirichlet measure Va, which is technically 
the smallest closed set of probability one, could be quite big. The support is actually 
characterized as all probability measures P* whose supports are contained in that 
of G, that is, 

supp(Va) = {P* : supp(P*) C supp(G)}. (2.4) 

In particular, if G is fully supported, like the normal distribution on the line, then 
trivially every probability measure is in the support of Va, To see why (2.4) is true, 
first observe that any supported P* must have P*(A) = 0 if A is disjoint from the 
support of G, which implies that G(A) = 0 and so P(A) = 0 a.s. [Va]. For the 
opposite direction, we use the fact tlwt weak approximation will hold if probabilities 
of a fine partition are approximated Wi..'.ll,, and this property can be ensured by the 
nonsingularity of the Dirichlet distribut10n with positive parameters. 

Self-similarity 

Another property of the Dirichlet process which distinguishes it from other pro-
cesses is the self-similarity property described as follows. Let A be any set with 
0 < G(A) < I, which ensures that O < P(A) < I for almost all Dirichlet process 
samples. Let PIA be the restriction of P to A, that is, the probability distribution 
defined by PIA (B) = P(A n B)/ P(A), and similarly PI Ac is defined. Then the pro-
cesses {P(A), P(Ac)}, PIA and PIAc are mutually independent, and moreover PIA 
follows DP(MG(A), GIA), Thus the assertion says that at any given locality A, how 
mass is distributed within A is independent of how mass is distributed within Ac, and 
both mass distribution processes are independent of how much total mass is assigned 
to the locality A. Further, the distribution process within A again follows a Dirichlet 
process with an appropriate scale. The property has its roots in the connection be-
tween independent gamma variables and the Dirichlet distributed variable formed 
by their ratios: if X 1, ... , Xk are independent gamma variables, then X = L7=

1 
X; 

and (X1/ X, .. . , Xk/ X) are independent. The self-similarity property has many 
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interesting consequences, an important one being that a Dirichlet process may be 
generated by sequentially distributing mass independently to various subregions 
following a tree structure. The independence at various levels of allocation, known 
as the tail-freeness property, is instrumental in obtaining large weak support of the 
prior and weak consistency of posterior. In fact, the Dirichlet process is the only 
tail-free process where the choice of the partition does not play a role. 

Limit types 
When we consider a sequence of Dirichlet processes such that the center measures 
converge to a limit G, then there can be three types of limits: 

(i) if the total mass goes to infinity, the sequence converges to the prior degen-
erate at G; 

(ii) if the total mass goes to a finite nonzero number M, then the limit is 
DP(M, G); 

(iii) if the total mass goes to 0, the limiting process chooses a random point from 
G and puts the whole mass 1 at that sampled point. 

To show the result, one first observes that tightness is automatic here because 
of the convergence of the center measures, while finite dimensionals are Dirichlet 
distributions, which converge to the appropriate limit by convergence of all mixed 
moments. The property has implications in two different scenarios: the Dirichlet 
posterior converges wealdy to the Bayesian bootstrap when the precision param-
eter goes to zero, at .:- .~~mverges to the degenerate measure at Po as the sample 
size n tends to infi ,·1 :_:y, where Po is the true distribution. Thus the entire posterior 
of P is weakly consistent at Po, and the convergence automatically strengthens 
to convergence in the Kolmogorov-Smimov distance, much in the tone with the 
Glivenko-Cantelli theorem for the empirical distribution. The result is extremely 
intriguing in that no condition on the base measure of the prior is required; consis-
tency holds regardless of the choice of the prior, even when the true distribution is 
not in the support of the prior. This is very peculiar in the Bayesian context, where 
having the true distribution in the support of the prior is viewed as the minimum 
condition required to make the posterior distribution consistent. The rough argu-
ment is that when the prior excludes a region, the posterior, obtained by multiplying 
the prior with the likelihood and normalizing, ought to exclude that region. In the 
present context, the family is undominated and the posterior is not obtained by 
applying the Bayes theorem, so the paradox is resolved. 

Dirichlet samples and ties 
As mentioned earlier, the Dirichlet process samples only discrete distributions. 
The discreteness property, on the other hand, is able to generate ties in the 
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observations and is extremely useful in clustering applications. More specifically, 
the marginal joint distribution of n observations (X 1, • • •, Xn) from P which is sam-
pled from DP(M, G) may be described sequentially as follows. Clearly, X1 ~ G 
marginally. Now 

Xz1P,X1 ~P and PIX1 ~DP(M+l, M:lG+ M~l8x1) , (2.5) 

which implies, after eliminating P, that X2IX1 ~ MA_!.I G + M~l 8x1, that is, the 
distribution of X2 given X 1 can be described as duplicating X 1 with probability 
1/(M + 1) and getting afresh draw from G with probability M/(M + 1). Continuing 
this argument to X n given X 1 , ... , X n-1 , it is clear that X n will duplicate any 
previous Xi with probability 1/(M + n - 1) and will obtain a fresh draw from G 
with probability M /(M + n - 1). Of course, many of the previous Xi are equal 
among themselves, so the conditional draw can be characterized as setting to 0j 
with probability n j /(M +n -1), where the0j are distinct values of {X1, ... , Xn-d 
with frequencies n j respectively, j = 1, ... , k, and as before, a fresh draw from 
G with probability M/(M + n - 1): 

with probability M:~-I j = 1, ... , k 

with probability M!-i, 
where k is the number of distinct observations in X t, . . . , Xn-I and 01, . . . , 0k are 
those distinct values. Also observe that, since (X 1, .. . , Xn) are exchangeable, the 
same description applies to any Xi given Xj , j = I, ... , i - 1, i + 1, ... , n. This 
procedure, studied in Blackwell and Mac Queen ( 1973 ), is known as the generalized 
P6lya urn scheme. This will turn out to have a key role in the development of 
Markov chain Monte Carlo (MCMC) procedures for latent variables sampled from 
a Dirichlet process, as in Dirichlet mixtures discussed shortly. 

Because of ties in the above description, the number of distinct observations, the 
total number of fresh draws from G including the first, is generally much smaller 
than n. The probabilities of drawing a fresh observation at steps 1, 2, ... , n are 
1, M/(M + 1), ... , M/(M + n - 1) respectively, and so the expected number of 
distinct values Kn is 

n M n 
E(Kn) = L --- ~ M log - as n oo. (2.6) 

i=I M + i - 1 M 

Moreover, one can obtain the exact distribution of Kn, and its normal and Poisson 
approximation, quite easily. The logarithmic growth of Kn induces sparsity that is 
often used in machine learning applications. 
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Sethuraman stick-breaking representation 

The Dirichlet process DP(M, G) also has a remarkable representation known as the 
Sethuraman (1994) representation: 

P = f Vi80;, 0i i.jj. G, V; = [ fi (1 - Yj )] Y;, Y; i.jj. Beta(l, M). (2.7) 
l=I j=I 

Thus P = Y1801 + (1- Y1) L;:2 V/80;+1' where V/ = [TT~=2(1- Yj)]Y;+i, so that 

P =d Y1801 + (1 - Y)P. (2.8) 

This distributional equation is equivalent to the representation (2.7), and can be 
used to derive various properties of the random measure defined by (2.7) and 
to generate such a process by MCMC sampling. The weights Vi attached to the 
points 01 , 02, ... respectively may be viewed as the result of breaking a stick of 
unit length randomly in infinite fragments as follows. First break the stick at a 
location Y1 ~ Beta(l , M) and assign the mass Y1 to a random point 01 ~ G. The 
remaining mass (1 - Y1) is the split in the proportion Y2 ~ Beta(l, M) and the 
net mass (1 - Y1)Y2 is assigned to a random point 02 ~ G. This process continues 
infinitely many times to complete the assignment of the whole mass to countably 
many points. What is intriguing is that the resulting process is actually DP(M, G). 
To get a rough idea why this is so, recall that for any random· distribution P and 
0 ~ P, the prior for P is equal to the mixture of the posterior distribution P 10 
where 0 follows its rr. 2-;·1~inal distribution. In the context of the Dirichlet process, 
this means that V a = I Da+s0 dG(0). Now if P is sampled from 'Da+oo, then 
P { 0} ~ Beta( 1, M ) assuming that a is no,.natomic. Thus the random P has a point 
mass at 0 of random magnitude distributed as Y ~ Beta( 1, M). With the remaining 
probability, Pis spread over {0}c, and Pi{01c ~ DP(M, G) independently of P{0} 
by the self-similarity property of the Dirichlet process, that is PI 101c =d P. This 
implies that the DP(M, G) satisfies the distributional equation (2.8), where Y ~ 
Beta(l, M), 0 ~ G and are mutually independent of P. The solution of the equation 
can be shown to be unique, so the process constructed through the stick-breaking 
procedure described above must be DP(M, G). 

Sethuraman's representation of the Dirichlet process has far reaching signif-
icance. First, along with an appropriate finite stage truncation, it allows us to 
generate a Dirichlet process approximately. This is indispensable in various com-
plicated applications involving Dirichlet processes, where analytic expressions are 
not available, so that posterior quantities can be calculated only by simulating them 
from their posterior distribution. Once a finite stage truncation is imposed, for com-
putational purposes, the problem can be treated essentially as a parametric problem 
for which general MCMC techniques such as Metropolis- Hastings algorithms and 
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reversible jump MCMC methods can be applied. Another advantage of the sum 
representation is that new random measures can be constructed by changing the 
stick-breaking distribution from Beta(l, M) to other possibilities. One example 
is the two-parameter Poisson-Dirichlet process where actually the stick-breaking 
distribution varies with the stage. Even more significantly, for more complicated 
applications involving covariates, dependence can be introduced among several 
random measures which are marginally Dirichlet by allowing dependence in their 
support points 0, or their weights V or both. 

Mutual singularity 

There are many more interesting properties of the Dirichlet process, for example any 
two Dirichlet processes are mutually singular unless their base measures share same 
atoms; see Korwar and Hollander (1973). In particular, the prior and the posterior 
Dirichlet processes are mutually singular if the prior base measure is nonatomic. 
This is somewhat peculiar because the Bayes theorem, whenever applicable, implies 
that the posterior is absolutely continuous with respect to the prior distribution. Of 
course, the family under consideration is undominated, so the Bayes theorem does 
not apply in the present context. 

Tail of a Dirichlet process 
We end this section by mentioning the behavior of the tail of a Dirichlet process. 
Since E(P) = G, one may think that the tails of G and the random P are equal 
on average. However, this is false as the tails of P are much thinner almost surely. 
Mathematically, this is quite possible as the thickness of the tail is an asymptotic 
property. The exact description of the tail involves loilg '.:\Xpressions, so we do not 
present it here; see Doss and Sellke (1982). However, it may be mentioned that 
if G is standard normal, the tail of P(X > x) is thinner than exp[-ex

2
f2] for all 

sufficiently large x a.s., much thinner than the original Gaussian tail. In a similar 
manner, if G is standard Cauchy, the corresponding random P has finite moment 
generating functions, even though the Cauchy distribution does not even have a 
mean. 

2.3 Priors related to the Dirichlet process 
Many processes constructed using the Dirichlet process are useful as prior distri-
butions under a variety of situations. Below we discuss some of these processes. 

2.3.1 Mixtures of Dirichlet processes 
In order to elicit the parameters of a Dirichlet process DP(M, G), as the center 
measure G is also the prior expectation of P, it is considered as the prior guess 


