Xi Chen

Tucson, AZ | 520-288-9908 | xic@math.arizona.edu

Education

The University of Arizona	Tucson, AZ
Ph.D. in Systems and Industrial Engineering	$Aug. \ 2018 - Present$
M.S. in Statistics	Aug. 2020 - Present
Beihang University	Beijing, China
M.S. in Control Science and Engineering	$Sep. \ 2015 - Mar. \ 2018$
B.S. in Quality and Reliability Engineering	$Sep. \ 2011 - Jun. \ 2015$
Peking University	Beijing, China
B.S. in Economics (dual degree), National School of Development	Sep. 2014 – Jun. 2017

Projects

Gaussian Process Regression with tensorial data input Python, R, Ansys Nov. 2018 -	- Pro	esent
• Built surrogate model based on Gaussian process to approximate expensive computer simulations followin learning pipeline, tuning hyperparameters to achieve high prediction accuracy	ıg m	achine
• Applied a novel distance metric on the supervised learning problem with high dimensional input and fun- output. Adopted some dimension reduction and scalable techniques, e.g., PCA, B-spline, compact suppor matrix, curve registration		
• Compared popular distance-based experiment designs for 2D and 3D image input with spatial relationship pixels considered, e.g., Maximin, MSPE-based	p an	nong
• Implemented Bayesian optimization with exploration and exploitation trade-off on a multi-resolution stru	ictur	e
Color normalization on medical images Python, MATLAB, Minitab JunN	ov.	2020
 Evaluated the effects of different factors on color rendition with ColorChecker: ambient color temperature light intensity and different time of the day; Applied two-way ANOVA test to verify the effects significan Normalized all the testing images in RGB color space, algorithm performance measured by angular error 	ce	stance,
Installation Prediction of Google Play Store Apps Python N • Applied 4C principal for data imputation, cleansing and manipulation, verifying model assumptions N • Fitted and justified a linear model first, then applied ridge regression for multicollinearity mitigation N	ov.	2020
 Local high school dining service design under CDC guidance AnyLogic, Java Developed a simulation model to visualize and analyze how the student flows behave during lunch service Proposed a strategic design on the dining hall layout, flow route, service time, number of lunch sessions, 	Э	2020
 Parameters inference of a 3D line from a noisy 2D image Python, TravisCI, Git Implemented Metropolis Hastings algorithm to approximate the posterior distribution with different star end-points, Compared the maximum posterior estimates obtained from one camera setting and two camera 	ting	2019 setting

PUBLICATIONS

Chen, X., Sharma, Y., Zhang, H. H., Xin, H., Zhou, Q., Gaussian Process model with tensorial data inputs and its application to design of printed antennas (under revision)

Sharma, Y., Chen, X., Wu, J., Zhou, Q., Zhang, H. H., Xin, H. (2022). Machine learning methods-based modeling and optimization of 3-D-Printed dielectrics around monopole antenna. IEEE Transactions on Antennas and Propagation, 70(7), 4997-5006.

TECHNICAL SKILLS

Machine Learning: Python (Pandas, NumPy, SciPy, sklearn, Matplotlib), MATLAB Statistical Analysis: R, Minitab, SAS Others: ROS, CARLA, Autoware, SQL, Git, Anaconda, TravisCI, LATEX