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Abstract.—Amino acid substitution models are a key component in phylogenetic analyses of protein sequences. All commonly
used amino acid models available to date are time-reversible, an assumption designed for computational convenience but
not for biological reality. Another significant downside to time-reversible models is that they do not allow inference of
rooted trees without outgroups. In this article, we introduce a maximum likelihood approach nQMaker, an extension of
the recently published QMaker method, that allows the estimation of time nonreversible amino acid substitution models
and rooted phylogenetic trees from a set of protein sequence alignments. We show that the nonreversible models estimated
with nQMaker are a much better fit to empirical alignments than pre-existing reversible models, across a wide range of
data sets including mammals, birds, plants, fungi, and other taxa, and that the improvements in model fit scale with the
size of the data set. Notably, for the recently published plant and bird trees, these nonreversible models correctly recovered
the commonly estimated root placements with very high-statistical support without the need to use an outgroup. We
provide nQMaker as an easy-to-use feature in the IQ-TREE software (http://www.iqtree.org), allowing users to estimate
nonreversible models and rooted phylogenies from their own protein data sets. The data sets and scripts used in this article
are available at https://doi.org/10.5061/dryad.3tx95x6hx. [amino acid sequence analyses; amino acid substitution models;
maximum likelihood model estimation; nonreversible models; phylogenetic inference; reversible models.]

Amino acid substitution models play an essential
role in model-based phylogenetic analyses of protein
sequences. Amino acid substitutions are typically char-
acterized by a time-continuous Markovian process,
which is homogeneous, stationary, and reversible (Fel-
senstein 2003). Homogeneity means that the substitution
rates remain constant during evolution; stationarity
implies that the frequencies of the amino acids are at
equilibrium; and reversibility indicates that substitution
rates between any two amino acids are equal in both
directions. Time-reversible models also obey detailed
balance, that is, fluxes between any pair of amino acids
have equal magnitude in both directions (Yang 2006).

Software such as FastMG (Dang et al. 2014) and
QMaker (Minh et al. 2021) can estimate time-reversible
models from collections of many multiple sequence
alignments (MSAs). The empirically derived matrices
of amino acid substitution rates are then typically fixed
in phylogenetic analysis of protein sequences. Although
mathematically and computationally convenient, there
is empirical evidence that the assumption of time
reversibility may be violated (Squartini and Arndt 2008;
Naser-Khdour et al. 2019). The challenge has been in
implementing software that is computationally efficient
enough to estimate time nonreversible models. If nonre-
versible models are a better fit to the data than reversible
models, we may see concomitant improvements in

the estimation of tree topologies and branch lengths
in phylogenetic analyses (the nonreversible models
increase the number of free parameters in the inference).

Another benefit of nonreversible models is that they
allow the root of a phylogenetic tree to be estimated in
the absence of an outgroup (Bettisworth and Stamatakis
2021; Naser-Khdour et al. 2021). Rooting trees is an
important part of studying evolutionary relationships
among species. Unfortunately, the time-reversible mod-
els limit maximum likelihood (ML) methods to construct
only unrooted trees because the likelihood of the tree
remains the same regardless of the root position. To cir-
cumvent this limitation, most studies use outgroups or
additional assumptions such as molecular clocks to root
phylogenetic trees (Maddison et al. 1984; Huelsenbeck
et al. 2002). However, finding an appropriate outgroup
for the clade under study can still be a challenge in
practice (Pearson et al. 2013). Other rooting methods
include midpoint rooting (Farris 1972), minimal ancestor
deviation (Tria et al. 2017), minimum variance rooting
(Mai et al. 2017), using gene duplication (Iwabe et al.
1989), using indels (Lake et al. 2006), or using unrooted
gene trees to root a species tree (Allman et al. 2011;
Boussau et al. 2013). Nonreversible models remove the
need for an outgroup because the root position is a
parameter of the model, and different rooting positions
will have different likelihoods. Recent studies based on
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simulated and empirical data have shown encouraging
early results, demonstrating that nonreversible models
can perform well on simulated data, and can give very
similar results to outgroup rooting on empirical data
(Bettisworth and Stamatakis 2021; Naser-Khdour et al.
2021).

We recently introduced QMaker (Minh et al. 2021),
a software tool that allows users to efficiently estimate
reversible models from large data sets. We showed that
the algorithms in QMaker improve on existing methods
(Whelan and Goldman 2001; Le and Gascuel 2008),
and used QMaker to estimate a suite of new reversible
matrices that can be applied to empirical data. QMaker
uses a number of approaches to make it computationally
feasible to rapidly estimate new Q matrices from large
collections of empirical alignments but was restricted to
estimating only time-reversible Q matrices.

In this article, we present nQMaker, which extends
QMaker to allow the estimation of stationary nonre-
versible models from large collections of alignments.
nQMaker combines a tree search strategy to determine
rooted ML trees during the model estimation process
and a ML algorithm to estimate 379 parameters of
nonreversible models (instead of 189 parameters of
reversible models) based on these rooted trees. We
applied nQMaker to estimate six stationary nonrevers-
ible models: one from Pfam and five from clade-specific
data sets for mammals, birds, insects, yeasts, and plants.
Our results show that stationary nonreversible models
not only improve the fit between the model and data, but
also accurately infer rooted phylogenomic trees in those
cases where we had confident a priori knowledge of the
root position from other empirical analyses.

MATERIALS AND METHODS

Estimating the Amino Acid Substitution Model
The amino acid substitution process is modeled by

a time-homogeneous, time-continuous Markov process
and represented by a 20×20 matrix Q={qxy} where qxy
is the number of substitutions between the two different
amino acids x and y per time unit (diagonal values
qxx are assigned such that the sum of all elements on
row x of Q equals zero). In phylogenetic inference, the
branch lengths reflect the number of substitutions per
site, thus, the Q matrix is normalized by dividing the
factor �, where �=−∑

�xqxx, and �x is the equilibrium
frequency of 20 amino acids.

The Q matrix is used to calculate the transition
probabilities between amino acids. Specifically, the
so-called transition probability matrix P

(
t
)={pxy

(
t
)},

where pxy
(
t
)

is the probability of changing from amino
acid x to amino acid y after t substitutions, can be
calculated as follows:

P(t)=eQt (1)

In a time-reversible model, the exchangeability rates
between amino acid x and amino acid y are the
same in both directions. We can only infer unrooted

trees with time-reversible models because the like-
lihood of the tree remains the same regardless of
the root placement (Felsenstein 1981). The revers-
ible Q matrix can be decomposed into a symmetric
exchangeability rate matrix R={rxy} and an amino
acid frequency vector �={�x} such that qxy =�yrxy if
x �=y, otherwise, qxx =−∑

y qxy. Thus, a reversible model
consists of 208 free parameters (i.e., 189 parameters from
the R matrix and 19 parameters from � vector).

If the Q matrix can be diagonalized, the matrix P(t) is
efficiently calculated as follows:

P(t)=U×e�t ×U−1 (2)

where � is the diagonal matrix of eigenvalues of Q; U
is the matrix of eigenvectors of Q and U−1 is its inverse
matrix.

In this article, we relax the assumption of time-
reversibility by removing the symmetric constraint of
the R matrix. Therefore, we need to estimate all off-
diagonal elements of the Q matrix. This increases the
number of free parameters from 208 to 379. The transition
probability matrix P

(
t
)

can be calculated using a com-
bination of eigen-decomposition and scaling-squaring
techniques provided by the Eigen3 library (Guennebaud
and Jacob 2010), which is already incorporated in IQ-
TREE 2 (Minh et al. 2020). Specifically, IQ-TREE 2 uses
eigen-decomposition to diagonalize Q into its (complex)
eigenvalues, eigenvectors, and inverse eigenvectors to
calculate P(t) using Equation (2). If Q is not diagon-
alizable, then IQ-TREE 2 employs the scaling-squaring
technique to compute P(t) based on the second-order
Taylor expansion of Equation (1).

Given a data set D={D1,...,Dn} consisting of n mul-
tiple amino acid sequence alignments, let T={T1,...Tn}
be the tree set corresponding to the data set D, that is, Ti is
the ML tree of alignment Di. The ML estimation method
determines the tree set T and a model Q to maximize
the likelihood value L

(
Q,T;D

)
. We assume that amino

acid substitutions among alignments and sites are
independent, thus, the likelihood value L

(
Q,T;D

)
can

be calculated as follows:

L
(
Q,T;D

)=
n∏

i=1

L(Q,Ti;Di)

=
n∏

i=1

li∏
j=1

L
(

Q,Ti;Dij

)
=

n∏
i=1

li∏
j=1

P(Dij|Q,Ti) (3)

where li is the length of alignment Di and Dij is
the data at site j of alignment Di. The likelihood
value L(Q,Ti;Dij) can be calculated by the conditional
probability P(Dij|Q,Ti) of data Dij given the model Q
and the tree Ti.

As amino acid substitution rates vary among sites, we
incorporate the site rate heterogeneity by determining
site rate models V={V1,...,Vn} for alignments D, that
is, Vi is the site rate model of alignment Di. Typically,
a site rate model combines a � distribution of rates, a
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FIGURE 1. The flowchart of nQMaker to estimate a time nonreversible model from a collection of multiple protein sequence alignments.

proportion of invariant sites (Yang 1993; Gu et al. 1995),
or a distribution-free rate models (Yang 1995). The best-
fit rate model for each MSA or locus was determined
by using ModelFinder (Kalyaanamoorthy et al. 2017).
The likelihood value L

(
Q,T,V;D

)
is now technically

calculated as follows:

L
(
Q,T,V;D

)=
n∏

i=1

li∏
j=1

L
(

Q,Ti,Vi;Dij

)

=
n∏

i=1

li∏
j=1

P
(

Dij|Q,Ti,Vi

)
(4)

where P(Dij|Q,Ti,Vi) is the conditional probability of
data Dij given the model Q, the tree Ti, and the site rate
model Vi.

The ML estimation method determines the parameters
of model Q, the trees T, and the site rate models
V to optimize the likelihood value L

(
Q,T,V;D

)
in

Equation (4).

Using nQMaker to Estimate Time Nonreversible Models
Estimating the Q matrix is computationally difficult

because we have to simultaneously estimate its paramet-
ers, the trees T, and the site rate models V. A number of
approximate maximum-likelihood methods have been
proposed to estimate model Q from large data sets
(Whelan and Goldman 2001; Le and Gascuel 2008; Dang

et al. 2014; Minh et al. 2021). The methods show that
the parameters of Q can be accurately estimated using
nearly optimal trees T and site rate models V. Thus,
we can iteratively estimate the model Q, the trees T,
and site rate models V to optimize the likelihood value
L
(
Q,T,V;D

)
. Most recently, QMaker (Minh et al. 2021)

has been shown to efficiently estimate reversible models
using this approach.

The nQMaker approach presented here extends
QMaker to estimate nonreversible models from large
data sets of MSAs. It is composed of four main steps
as illustrated in Figure 1 and described as follows:

1. Initialize a set of candidate matrices Q; typically
we use LG (Le and Gascuel 2008), JTT (Jones et al.
1992), and WAG (Whelan and Goldman 2001) as
three initial matrices. Set the current best matrix
QBEST := LG.

2. For each Di, determine Qi ∈Q as the best-fit matrix,
Vi as the best site rate model, then employ IQ-TREE
2 to estimate an ML tree Ti based on Qi and Vi (if Qi
is nonreversible Ti is a rooted tree). Let Ti and Li be
the topololgy and branch lengths of tree Ti, respect-
ively. For clade-specific data sets, instead of con-
structing a separate topology Ti for each locus, we
estimate only one edge-linked topology T across
all loci, although allowing rate variation across all
loci using and edge-linked partitioned model.
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TABLE 1. Summary of six data sets used for training and testing nonreversible models

Data set No. of sequences No. of sites Training Testing References

Pfam 1,150,099 3,433,343 6654 6654 El-Gebali et al. (2018)
Bird 52 4,519,041 1000 6295 Jarvis et al. (2015)
Insect 144 595,033 1000 1482 Misof et al. (2014)
Mammal 90 3,050,199 1000 3162 Wu et al. (2018)
Plant 38 432,014 1000 308 Ran et al. (2018)
Yeast 343 1,162,805 1000 1408 Shen et al. (2018)

3. With Vi and Ti fixed, estimate QNEW and Li to
maximize the log-likelihood function. Precisely,
we iterate two substeps:

a) With Vi,Ti, and Li fixed, estimate QNEW .

b) With Vi,Ti, and QNEWfixed, estimate Li. If the
log-likelihood is increased more than 0.1 go
to sub step a, otherwise, go to the next step 4.

4. Assign QBEST :=QNEW . If the Pearson correlation
coefficient between QBEST and QNEW is less than
0.999, add QBEST to the set of candidate matrices
Q, repeat from step 2. Otherwise, return QBEST as
the final matrix for the database D.

The key difference between nQMaker and QMaker
is that nQMaker uses rooted ML trees to estimate the
379 parameters of nonreversible models, rather than
using unrooted trees to estimate the 189 parameters of
reversible models in QMaker. Experiments on large data
sets show that the estimation process usually stops after
three iterations.

Data Sets
We used the general Pfam database (seed alignments

version 31) and the same five clade-specific data sets as
used in the QMaker paper (i.e., Plant, Bird, Mammal,
Insect, and Yeast). The Pfam data set consists of 13,308
MSAs from 1,150,099 sequences including 3,433,343 sites.
The Pfam data set was randomly divided into training
and testing sets each containing 6654 MSAs. The clade-
specific data sets contain between 1308 (Plant) and
7295 (Bird) loci, and between 38 (Plant) and 343 (Yeast)
sequences. For each clade-specific data set, we randomly
selected 1000 MSAs for estimating a nonreversible model
and used the remaining MSAs for testing the estimated
model. We filtered out small loci with fewer than 50 sites
in the Insect data set (no other data sets contained loci
with fewer than 50 sites).

The six data sets are summarized in Table 1
and available from the Supplementary material avail-
able on Dryad at https://doi.org/10.5061/dryad.
3tx95x6hx.

Many genome annotations are contaminated with
Pfams that do not belong to the ostensibly sequenced
and assembled species’ genome but to one of its parasites
(Breitwieser et al. 2019; Salzberg 2019). Therefore, we

excluded all Pfam domains whose annotations sug-
gested parasitic origin, for example, “viral” or “tran-
scriptase” (James et al. 2021) from our training and
testing Pfam sets to create a cleaned training Pfam set of
3655 MSAs and a cleaned testing Pfam set of 3611 MSAs.
We then estimated a new nonreversible model from this
cleaned Pfam data set, which we call NQ.cPfam. In the
following, we primarily consider the full Pfam data set
as our Pfam model.

Model Estimation
We used nQMaker to estimate nonreversible models

(denoted NQ) from the training sets of six data sets,
that is, NQ.pfam for Pfam, NQ.cPfam for cleaned Pfam,
NQ.plant for Plant, NQ.bird for Bird, NQ.insect for
Insect, NQ.mammal for Mammal, and NQ.yeast for
Yeast. The reversible models for the data sets (Q.pfam,
Q.plant, Q.bird, Q.insect, Q.mammal, and Q.yeast) were
obtained from the QMaker paper (Minh et al. 2021). We
compared nonreversible models and reversible models
on testing sets using Bayesian information criterion (BIC)
values (Schwarz 1978). All models were tested with rate
models “+G4” (� distribution with four categories),
“+I” (invariant site model), and “+Rc” (distribution-free
rate model with c categories). The reversible models were
also tested with “+F” option (i.e., amino acid frequencies
were directly estimated from testing data). Note that each
nonreversible model is represented by a single matrix
Q, therefore “+F” option is not valid for nonreversible
models.

The nonreversible model for the Pfam data set was
estimated with two commands in IQ-TREE 2:

iqtree2 -S ALN_DIR -mset LG,WAG, JTT
-cmax 4

iqtree2 -S ALN_DIR.best_model.nex -te
ALN_DIR.treefile --model-joint NONREV+FO

where -S ALN_DIR option specifies the directory
of training data; -mset LG,WAG,JTT option defines
the initial candidate matrices to reduce computa-
tional burden; -cmax 4 option restricts up to four
categories for the rate heterogeneity across sites.
The first command outputs the best models to
ALN_DIR.best_model.nex and the best trees to
ALN_DIR.treefile. These files are then used as the
input for the second command, which estimates a joint
nonreversible Q matrix across all input alignments.
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For clade-specific data sets, we used -p option instead
of -S option to estimate an edge-linked partition model
with a single tree topology shared across all loci. This -p
option is typically used for the estimation of trees using
concatenated sequences, assuming a single species tree
but rescaling the branch lengths of the individual single-
locus trees. Previous work has shown that edge-linked
partitioned models usually perform best among a range
of related options (Duchêne et al. 2019).

Performance Comparison
We compared the nonreversible (NQ) and reversible

(Q) models on the test alignments of the Pfam, bird,
mammal, insect, plant, and yeast data sets. For each data
set, we counted the number of test alignments for which
the NQ model was a better fit to the data than the Q
model using the BIC and BIC weight (Schwarz 1978).

To ask whether the improvement in fit of nonreversible
models is associated the length of an alignment, we ana-
lyzed both single-locus and concatenated alignments.
We first assessed the relationship between single-locus
alignment length on the relative model fit of NQ models
using our five clade-specific data sets. For each clade-
specific data set, we classified the test alignments into
10 bins according to their length, then calculated the
Spearman correlation between the rank of the bin and
the proportion of alignments which were best fit by
the NQ model for that data set. We also examined
the fit of the new NQ models on longer concatenated
alignments. To do this, we assessed the model fit of NQ
models on concatenated alignments from clade-specific
data sets with 1, 5, 10, 20, 50, 100, and 200 loci. For
each number of loci, we randomly created 100 replicate
concatenated alignments, then calculated the proportion
of 100 replicates where the NQ model was a better fit
to the data than the Q model. For example, for the
Plant data set and the case of 10 loci, we created 100
concatenated alignments each composed of 10 different
randomly selected loci from the Plant test data set, then
compared the fit of NQ.plant to Q.plant on those 100
concatenated alignments.

We then tested whether the six new nonreversible
matrices affect tree topology inference (we consider the
seventh model, NQ.cPfam, later). For each single-locus
MSA in each test data set, we inferred an unrooted
ML tree using the best-fit model among nine published
reversible models (JTT, WAG, LG, Q.pfam, Q.plant,
Q.mammal, Q.bird, Q.insect, and Q.yeast), which we
call TREV. We then performed a second IQ-TREE run
considering 15 models, comprising the same nine revers-
ible models but adding six new nonreversible models
(NQ.pfam, NQ.plant, NQ.mammal, NQ.bird, NQ.insect,
or NQ.yeast), to infer another tree TNEW. If one of the
six NQ models fits the data better, then TNEW will be
rooted and will therefore differ from TREV. In this case
we launch another IQ-TREE run with the same matrix
as TREV but using a different random seed. We call the
resulting tree TREV2. Otherwise, if the NQ models do

not provide a better fit, then the 2nd run will use the
same model as the first run but TNEW might still be
different from TREV due to search heuristics. Thus, for
each alignment we now have three trees TREV, TNEW,
and TREV2 when a nonreversible model fits the data best.

We then compared the three trees for each alignment
when a nonreversible model fits the data best using
normalized Robinson–Foulds (nRF) distances (Robinson
and Foulds 1981). The nRF distance simply normalizes
the standard RF distance (the number of splits by which
two trees differ) by dividing it by the maximum possible
distance between those two trees. Thus, a value of 0
indicates two identical trees, and a value of 1 indicates
two trees that are maximally different, that is, share no
splits in common. To calculate the nRF we first unrooted
the rooted tree (if required) then used IQ-TREE to calcu-
late the nRF with options-rf1 ---normalize-dist.
To ask whether nonreversible models lead to bigger
changes in tree topologies than expected from search
heuristics alone, we compared the two distributions of
nRF distances: nRF(TNEW, TREV), which is the distri-
bution of differences driven by a nonreversible model
being a better fit to the data than a reversible model;
and nRF(TREV, TREV2), which is the distribution of
differences driven by changing the random number seed
under a reversible model. If nonreversible models have
an appreciable effect on tree topologies, we would expect
nRF(TNEW, TREV) to be composed of larger differences
than nRF(TREV, TREV2).

We compared NQ.Pfam to NQ.cPfam to ask spe-
cifically whether cleaning the Pfam data set has any
measurably impact on the Q matrix or the model
performance. To do this, we measured the BIC score of
both models on the test MSAs from both the Pfam data
set and the cleaned Pfam data set (cPfam).

RESULTS

Nonreversible Models Generally Provided much Better Fit to
the Data than Reversible Models

We used the training data of the Pfam, bird, mammal,
insect, plant, and yeast data sets to estimate nonrevers-
ible models (NQ) and compare them with the reversible
models on the test alignments. For each data set, we
counted the number of test alignments for which the
NQ model was better than the Q model using the
BIC. Table 2 shows that the NQ models fit the data
better than the Q models for all clade-specific data
sets, typically being selected as the best fit model for
60–70% of the test alignments. However, for the Pfam
data set the reversible model Q.pfam outperformed the
nonreversible model NQ.pfam, with the former being
the best fit for two-thirds of the test alignments.

We suspected that the poor performance of NQ.pfam
might be caused by a large number of small Pfam
alignments (76% of Pfam test alignments have ≤100
sequences). This is supported by post hoc data analysis,
which shows that the NQ.pfam model outperformed
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TABLE 2. The number of alignments where the NQ and Q models
were selected as best-fit on six data sets

Pfam Bird Insect Mammal Plant Yeast

NQ 2218 3895 1001 1950 190 869
(33.33%) (61.87%) (67.54%) (61.67%) (61.69%) (61.72%)

Q 4436 2400 481 1212 118 539
(66.67%) (38.13%) (32.46%) (38.33%) (38.31%) (38.28%)

Note: For example, the NQ model outperformed the Q model on 61.87%
of testing alignments in the Bird data set.

the Q.pfam model in just 26% of small test alignments
(with≤100 sequences) but in 56% of large test alignments
(with >100 sequences). The median size of alignments
best fit by NQ.pfam (78 sequences) is much larger
than the median size of alignments best fit by Q.pfam
(26 sequences). We further examined the effect of the
number of sequences in the alignment on the model
fit of NQ.pfam by classifying test alignments in Pfam
into 10 subsets (bins) by the number of sequences such
that ith(i=0...9) bin contains all test alignments with(
i×100+1

)
to (i×100+100) sequences. We calculated the

Spearman correlation between the rank of the bin and
the proportion of alignments in the bin which are best
fit by NQ.pfam. The Spearman correlation value is 0.903
indicating that the model fit of NQ.pfam increases with
the number of sequences in testing alignments.

Second, we compared 10 different models comprised
of the 6 nonreversible models, 3 general models (JTT,
LG, and WAG), and 1 best-fit reversible model for each
testing data set (e.g., Q.pfam for Pfam or Q.plant for
Plant). Similar to the results above, these results show
that the nonreversible models performed best for the
clade-specific data sets, but not for the Pfam data set
(Figure 2). In most cases, the second best model for
each clade-specific data set was the reversible model
previously estimated for that data set (e.g., Q.mammal
is the second best data set behind NQ.mammal for the
mammal data set, Figure 2).

We also used the BIC weights across loci to measure
the fit of each MSA/locus with 15 models (6 NQ models,
6 Q models, JTT, LG, and WAG). The distributions of BIC
weights across loci for six test data set sets (Fig. S1 of the
Supplementary material available on Dryad) show sim-
ilar findings as above: the clade-specific nonreversible
models perform best for the clade-specific data sets, and
the reversible Pfam model (Q.Pfam) performs best for the
Pfam data set, with the nonreversible model (NQ.Pfam)
being second-best.

Finally we asked whether cleaning the Pfam data
set improved performance, by comparing the NQ.Pfam
model to the NQ.cPfam model estimated from the
cleaned training Pfam set (cPfam; see Material and
Methods), by comparing their performance on the test
MSAs from both the Pfam and cPfam data sets. NQ.Pfam
performed better than NQ.cPfam both data sets: it had a
lower BIC score than the NQ.Pfam on 2519 (69.7%) out
of the 3611 cPfam test MSAs, and on 4774 (71.7%) out of
6654 Pfam test MSAs. Thus, the contaminated MSAs in

the Pfam data set did not adversely affect the quality of
the NQ.pfam model.

Nonreversible Model Fit Correlates with Alignment Lengths
Analyses comparing the length of single-locus MSAs

to the proportion of MSAs best fit by a nonreversible
model showed variable results among data sets. The
Spearman correlations were 0.47 for NQ.Bird, 0.87 for
NQ.insect, 0.56 for NQ.Mammal, −0.02 for NQ.Plant,
and 0.42 for NQ.yeast. This suggests that both the
strength and the sign of the correlation between align-
ment length and the relative fit of nonreversible models
can vary considerably, depending on the data set.

We next sought to examine the relative fit of the
new NQ models and alignment length using much
longer concatenated alignments. The results on five
clade-specific data sets (see Figure 3) show that the
proportion of replicates for which the NQ model is the
best-fit model increases with the number of loci in the
concatenated alignment. The NQ models outperformed
the corresponding Q models on almost all concaten-
ated alignments with ≥20 loci, and on practically all
concatenated alignments with >50 loci (Fig. 3). The
difference in BIC scores between Q and NQ models
increased linearly with the number of loci for all five
clade-specific data sets. We note that for alignments with
fewer than 20 loci, the relative fit of the NQ models varied
among replicates, which we hypothesize is related to
stochasticity in the amount of phylogenetic information
contained in short alignments. This result suggests that
for phylogenomic data sets with many loci, nonreversible
models will almost always outperform reversible models
in terms of their model fit, and may therefore lead to
more accurate estimation of trees and branch lengths in
these cases.

Analysis of the Properties of Nonreversible Models
We used principal component analysis (PCA) to

visualize the difference between nonreversible and
reversible models. Each model was represented by
one vector of all amino acid substitution rates and
subsequently analyzed by our R script (available
at https://doi.org/10.5061/dryad.3tx95x6hx). Figure 4
illustrates the PCA analysis of 6 nonreversible models
and 25 existing reversible models. Figure 4 shows that
the models group into three distinct clusters, that is,
one cluster of nonreversible models, one cluster of
reversible models estimated from mitochondrial data,
and another cluster of reversible models estimate from
other genomic regions. This PCA analysis indicates
that nonreversible models provided a very distinct
pattern of amino acid substitutions not captured by
existing reversible models. To understand these NQ
matrix substitution patterns, we calculated the net
flux between each amino acid pair for each clade.
Figure 5 shows drastic departures from reversibility in
all taxonomic groups, and substantial differences among
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FIGURE 2. The percentage of testing alignments best fit by each model in Pfam and five clade-specific data sets.

taxonomic groups. The largest nonreversible fluxes are
not between particularly codon-adjacent or (what are
typically considered) chemically similar amino acids.
Further study is needed to understand the contributions
of amino acid chemistry to the direction and magnitude
of the fluxes, and thus to the nonreversible evolutionary
process summarized in the NQ matrices.

Nonreversible Models Correctly Inferred the Root Placement
of Reconstructed Trees

We assessed the root placement of trees reconstructed
with nonreversible models from the two clade-specific
data sets where previous publications have indicated a
well-supported root placement, that is, the plant tree
from Ran et al. (2018) and the bird tree from Jarvis
et al. (2015). The branches on reconstructed trees were
labeled with rootstrap values calculated from an ultrafast
bootstrap analysis (Hoang et al. 2017), that is, the
rootstrap value for a branch is defined as the fraction
of rooted bootstrap trees which have the root on that

branch (Naser-Khdour et al. 2021). We also performed
approximately unbiased (AU) test (Shimodaira 2002)
with 1000 replicates for all branches to determine a
confidence set of root branches (i.e., branches with
pAU >0.05 are considered as potential root branches and
included into the confidence set) (Naser-Khdour et al.
2021).

Figure 6 illustrates the plant-rooted tree and the
bird-rooted tree reconstructed using NQ.plant and
NQ.bird, respectively. The expected root branch, based
on the analysis of the plant tree (Ran et al. 2018)
using outgroups, belongs to the AU test confidence set
and has a rootstrap value of 1.000 (supported by all
bootstrap trees). Similarly, the expected root branch,
based on previous analyses of bird tree (Jarvis et al.
2014) using outgroups, was confirmed by the AU test and
labeled with a very high-rootstrap value of 0.998. These
results demonstrate that nonreversible models recon-
structed rooted trees with high confidence in root place-
ments that agree with the roots inferred by outgroup
rooting.
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FIGURE 3. The proportion of 100 concatenated alignments best fit by nonreversible models on five clade-specific data sets.

Nonreversible Models Inferred Different Locus Trees and
Coalescent-based Species Trees

We next examined whether nonreversible models
affect the topologies of estimated ML trees from single
loci. The two nRF distributions are depicted in Figure 7.
We found that using nonreversible models changes locus
tree topologies in every data set (the solid line) and
in many data sets, the extent of topological changes
induced by the nonreversible models is larger sub-
stantially greater than those induced by changing the
random number seed with otherwise identical reversible
model analyses (the dotted line).

Because of the observed differences between gene tree
topologies, we examined to what extent it influences the
reconstruction of species trees using coalescent-based
methods. These methods use distributions of single-
locus trees to infer a species tree, so changes in the
underlying single-locus trees may affect species-tree
inference. To this end, for each clade-specific data set,
we used ASTRAL version 5.15 (Zhang et al. 2018) to
construct a species tree ASTRALREV from the set of trees
estimated using reversible models (TREV) and a species
tree ASTRALNEW from the set of TNEW trees, estimated
using the best-fit models regardless of whether they
were reversible or nonreversible For plant data set, the
ASTRALREV tree and the ASTRALNEW tree (Figure 8a)
differ by the position of a single taxon, Liriodendron. The
topological differences are more pronounced for Mam-
mals, Insects, Yeasts, Birds with 2, 10, 15, and 17 different
branches between the ASTRALREV and ASTRALNEW
trees. Figure 8b highlights these differences for the Bird

data set, the other trees are available as Supplementary
material available on Dryad.

DISCUSSION

Most phylogenetic analyses of protein sequences
use time-reversible substitution models, which can be
limited in their ability to accurately model the biological
process of amino acid substitution. Although estimating
time nonreversible models is complicated and compu-
tationally expensive (e.g., 1.5 days with a computer of
36 cores for estimating NQ.plant and 105 days with
the same computer for estimating NQ.pfam), it has
the potential to allow models of sequence evolution to
better reflect the underlying evolutionary mechanisms,
and hence could improve the estimation of evolutionary
relationships and timescales among species.

In this article, we introduce nQMaker to estimate
nonreversible models from large data sets including
hundreds to thousands of MSAs. We used nQMaker
to estimate six nonreversible models: a general protein
model from Pfam and five clade-specific data sets for
birds, insects, mammals, plants, and yeasts, respect-
ively. Our analyses show that the nonreversible models
uncover distinct patterns of amino acid substitutions
not captured by traditional reversible models, that
the nonreversible models affect the inference of tree
topologies, and allow for the estimation of root positions
without outgroups.

Our results show that nonreversible models are more
favorable to reversible models when increasing the size
of the alignment. Nonreversible models were selected
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FIGURE 4. Principal component analysis of 6 nonreversible models and 25 reversible models. Each model was represented by one vector of
all (400) elements of the Q matrix. The nonreversible models are grouped into one distinct cluster.

using standard model selection approaches for most
single-locus alignments. In concatenated multilocus
alignments, nonreversible models tended to be the best
fit model in practically all data sets with at least 20
loci. The trees inferred with nonreversible models were
often topologically different from those constructed with
reversible models, suggesting that when a nonreversible
model is the best-fit model for a data set, topological
accuracy of phylogenetic inference may be improved.

Rooting phylogenetic trees is an essential task in
studying evolutionary relationships among species. This
is normally accomplished by using outgroup species
or additional assumptions such as molecular clocks
(Huelsenbeck et al. 2002). Nonreversible models provide
an alternative approach that implicitly enables the
reconstruction of rooted trees as part of the model. Our
analyses of Bird and Plant data sets with nonreversible
models identified the root of the trees of these groups
with a very high-statistical confidence that agree with
previous studies (Jarvis et al. 2015; Ran et al. 2018).
Together with other encouraging results on mammals
(Naser-Khdour et al. 2021) and from simulated data
(Bettisworth and Stamatakis 2021), this provides increas-
ing evidence that nonreversible models are effective in

identifying root placements for empirical data sets, and
will be useful when an appropriate outgroup is difficult
to obtain.

The nonreversible models consist of 379 parameters
describing all pairwise substitution rates between 20
amino acids. Therefore, they should be estimated from
large data sets consisting of hundreds to thousands
MSAs to avoid overfitting the training data. The six
nonreversible rate matrices we estimate in this study
are now available in the latest version of IQ-TREE 2,
allowing researchers to easily use these models for their
analyses. We recommend that users perform model
selection to determine the best fit model for any specific
alignment under study, and note that it is possible to
combine both reversible and nonreversible models in a
single partitioned analysis. The nQMaker algorithm is
implemented in IQ-TREE 2, so researchers can estimate
nonreversible models from their own data sets. For
example, the NQ.plant model was estimated from 1000
plant alignments in 1.5 days using a computer with 36
cores.

A limitation of our models is that although relaxing
the time reversibility, they still assume stationarity, that
is, the amino acid frequencies stay constant along the
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FIGURE 5. Departures from reversibility are large, and vary across taxonomic groups. Net fluxes are calculated from nonreversible rate
matrices as net fluxij =|fluxi→j −fluxj→i|=|(ratei→j ×freqi)−(ratej→i ×freqj)|. a) The smoothed histograms (calculated by kernel density estimation
with R package ggridges) show each taxonomic group’s distribution of net flux magnitudes across all amino acid pairs, normalized for each
pair relative to net flux as (2×netfluxij)/(fluxi→j +fluxj→i). b–g) Chord diagrams show the largest 5% of net fluxes between pairs, that is, most
information about net flux magnitude is given by presence versus absence in the chord diagrams. The size of each band along the outer circle
represents the equilibrium frequency of each amino acid, and the width of each chord at its attachment points is proportional to the magnitude
of net flux between each pair of amino acids for that taxonomic group. Color in chord diagrams is for ease of interpretation and contains no
extra information.
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a) b)

FIGURE 6. The plant-rooted tree of 35 species (a) reconstructed from a concatenated protein alignment of 1308 loci using IQ-TREE 2 with
the NQ.plant model. The bird-rooted tree of 48 species (b) reconstructed from a concatenated protein alignment of 8295 loci using the NQ.bird
model. Bold branches are branches contained in the confidence set of the AU test, numbers displaying on branches are the rootstrap values
greater than zero.

FIGURE 7. Distributions of normalized Robinson–Foulds (nRF) distances between the trees inferred by nonreversible and reversible models.
The solid line is the distribution where the best-fit model is one of the new nonreversible models inferred in this study (NQ.pfam, NQ.plant,
NQ.mammal, NQ.bird, NQ.insect, or NQ.yeast). Comparing to best-fit reversible model, new model shows an effect on the tree topology (the
best-fit reversible model is chosen from nine existing models Q.pfam, Q.plant, Q.mammal, Q.bird, Q.insect, Q.yeast, LG, JTT, or WAG; and is
showed by the dotted line).
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a) b)

FIGURE 8. ASTRALNEW species trees from plant (a) and bird (b) data reconstructed from the set of TNEW locus trees. Shown on each internal
branch the ASTRAL local posterior probability.

tree. However, the stationary assumption is highly likely
to be violated during the evolution of distantly related
proteins, for example, between bacteria and eukaryotes.
Failure to account for heterogeneous sequence compos-
ition might mislead phylogenetic reconstruction. Apart
from nonstationary models, one can also use a mixture
model of several Q matrices such as C10-C60, LG4M, and
LG4X (Le et al. 2012). Deriving nonstationary and/or
additional mixture amino acid models is an important
avenue of future research.
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