1. The random vector $(X, Y, Z)^T$ follows a multivariate Normal distribution with mean vector $\mathbf{0} = (0, 0, 0)^T$ and covariance matrix

$$
\begin{pmatrix}
1 & \rho & 0 \\
\rho & 1 & \gamma \\
0 & \gamma & 1
\end{pmatrix}.
$$

In particular, X and Z are independent.

(a) Define $U = Y - Z$ and $W = Y + Z$. What are respectively the marginal distributions of U and W?

(b) Compute $\text{Cov}(U, W)$. Are U and W independent? Explain your answer.

(c) Obtain the conditional distribution of X, given $W = Y + Z$.

2. There are n balls labeled by $1, 2, \ldots, n$ and n bags labeled by $1, 2, \ldots, n$.

(a) Randomly put n balls in n bags (allowing more than one ball in one bag), what is the probability that there is at least one ball in the bag of the same label?

(b) Randomly put n balls in n bags such that there is exactly one ball in each bag, what is the probability that there is no ball in the bag of the same label?

3. Let X_1, X_2, \cdots be independent and identically distributed (IID) variables from uniform distribution on $(1, 2)$, and let H_n denote the harmonic average of the first n variables

$$H_n = \frac{n}{\sum_{i=1}^{n} X_i^{-1}}.$$

(a) Show that $H_n \xrightarrow{p} c$ as $n \to \infty$, and identify the constant c.

(b) Show that $\sqrt{n}(H_n - c)$ converges in distribution, and identify the limit distribution.

4. Let X_1, \cdots, X_n be an IID sample of from Beta distribution $\text{Beta}(\theta, 1)$, where $\theta > 0$ is an unknown parameter.

(a) Find the maximum likelihood estimator (MLE) of $1/\theta$.

(b) Calculate the information inequality lower bound for $1/\theta$. Does the MLE obtained in (a) achieve the inequality lower bound? Show your answer.

(c) Find an unbiased estimator of $\theta/(\theta + 1)$. Check whether the unbiased estimator achieves the information inequality variance bound.

5. Let X_1, \ldots, X_n be an IID sample from $N(\mu, \sigma^2)$, where μ and $\sigma^2 > 0$ are unknown parameters.

(a) Obtain a complete and sufficient statistic for $\theta = (\mu, \sigma^2)$.

(b) Find the UMVUE of σ^r for $r > 0$.

(c) Find the UMVUE of $\frac{\mu}{\sigma}$.

6. Let X_1, \ldots, X_n be an IID sample from $N(\mu, 1)$ with an unknown μ. Suppose that one forgets to record the values of X_1, \ldots, X_n in a study and instead only records $Y_i = I(X_i > 0)$ for $i = 1, \ldots, n$.

(a) Find the MLE of μ based on the observed data, $Y = (Y_1, \ldots, Y_n)$.

(b) Is $\sum_{i=1}^n Y_i$ a sufficient statistic for μ? Justify your answer.

(c) Is $\sum_{i=1}^n Y_i$ a complete statistic? Explain.

(d) Use the observed data Y to construct a level-α uniformly most powerful (UMP) test for testing $H_0 : \mu \leq \mu_0$, vs $H_1 : \mu > \mu_0$.

Please describe the form of the rejection region in terms of Y, and simplify the expression as much as you can. You can use the normal approximation to compute the cut-off value for the rejection region.
Solutions:

1. (a) \(P(\text{desired event}) = 1 - P(\text{there is no ball in the bag of the same label}) = 1 - (n-1)^n/n^n. \)

 (b) This is the same as envelop matching problem.

 \[
P(\text{desired event}) = 1 - P(\text{at least one match}) = 1 - \left(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) \frac{(n-k)!}{n!} \right)
\]

 \[
 = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^{n-1} \frac{n!}{n!}
\]

2. (a) \(U \) is distributed as \(N(0, 2 - 2\gamma) \). \(W \) is distributed as \(N(0, 2 + 2\gamma) \).

 (b) \(\text{Cov}(U, W) = \text{Var}(Y) - \text{Var}(Z) = 0. \) Since they are jointly bivariate normal, they are independent.

 (c) The joint distribution of \(X \) and \(W \) is bivariate Normal distribution with mean zero and variance-covariance matrix

 \[
 \begin{pmatrix}
 1 \\
 \rho \\
 2 + 2\gamma
 \end{pmatrix}
 \]

 Hence, \(X \) conditional on \(W \) follows a Normal distribution with mean \(\frac{\rho W}{\sqrt{2+2\gamma}} \) and variance \(1 - \rho \).

3. (a) It is easy to find that \(\frac{1}{X_1}, \frac{1}{X_2}, \ldots, \frac{1}{X_n} \) is a random sample from density \(1/y^2, \frac{1}{2} < y < 1. \) By LLN,

 \[
 \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i} \xrightarrow{P} \frac{\rho}{E \frac{1}{X_1}} = \ln 2,
 \]

 hence \(H_n \xrightarrow{P} \frac{1}{\ln 2} = c. \)

 (b) By CLT, \(\sqrt{n}(H_n^{-1} - \ln 2) \xrightarrow{D} N(0, \frac{1}{2} - (\ln 2)^2)). \) Then by Delta method,

 \[
 \sqrt{n}(H_n - c) \xrightarrow{D} N \left(0, \frac{\frac{1}{2} - (\ln 2)^2}{\ln 2^4} \right).
 \]
4. Let X_1, \ldots, X_n be a sample of from Beta distribution $\text{Beta}(\theta, 1)$, where $\theta > 0$.

(a) The MLE of θ is $\hat{\theta} = -\sum_{i=1}^{n} \log X_i$. By invariance principle, the MLE of $1/\theta$ is $1/\hat{\theta} = -\sum_{i=1}^{n} \log X_i/n$.

(b) Since $E(-\log X_1) = \frac{1}{\theta}$, the MLE is unbiased. The Cramer-Rao variance lower bound is $1/(n\theta^2)$. Since $\text{Var}(\log X) = \frac{1}{\theta^2}$, the MLE achieves the CR bound.

(c) $E X = \frac{\theta}{\theta + 1}$, so \bar{X} is unbiased for $\frac{\theta}{\theta + 1}$. And $\text{Var}(\bar{X}) = \frac{\theta(\theta + 1)^2}{n(\theta + 2)(\theta + 1)^2}$. The CR bound for estimating $\frac{\theta}{\theta + 1}$ is $\frac{\theta^2}{n(\theta + 1)^2}$. The estimator \bar{X} does not achieve the bound.

5. Let X_1, \ldots, X_n be a random sample from $\text{N}(\mu, \sigma^2)$.

(a) (\bar{X}, S^2) is complete and sufficient. (need to show details)

(b) Note $T = S^2 \sim \text{Gamma}(\frac{n-1}{2}, \frac{2\sigma^2}{n})$. Denote $\alpha = \frac{n-1}{2}$ and $\beta = \frac{2\sigma^2}{n}$. We have

$$E(S^2) = E[(S^2)^{\alpha/2}] = \int_0^{\infty} t^{\alpha/2} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} e^{-t/\beta} t^{\alpha-1} dt = \sigma^2 \frac{\Gamma(\frac{r+n-1}{2})}{\Gamma(\frac{r}{2})} \left[\frac{2}{n-1} \right]^{\frac{r}{2}}.$$

Using the Rao-Blackwell, the estimator $S^2 \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n-2}{2})} \left[\frac{n-1}{2} \right]^{\frac{r}{2}}$ is the UMVUE for σ^2.

(c) \bar{X} is independent of S^2. Therefore

$$E \left[\frac{\bar{X}}{S^2} \right] = E \left[\frac{1}{S} \right] = \frac{\mu \sigma}{\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n-2}{2})} \left[\frac{n-1}{2} \right]^{\frac{r}{2}}}.$$

The UMVUE of μ/σ is $\frac{\bar{X}}{S^2} \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n-2}{2})} \left[\frac{n-1}{2} \right]^{\frac{r}{2}}$.

6. (a) Y_i follows $\text{Bin}(1, p)$ with $p = P(X_i > 0) = \Phi(\mu)$, where $\Phi(\cdot)$ is the CDF of $\text{N}(0, 1)$. Then $\hat{\mu}_{\text{MLE}} = \bar{Y}$ and $\hat{\mu}_{\text{MLE}} = \Phi^{-1}(\bar{Y})$.

(b) $Y_i \sim \text{Bin}(1, p)$. By the factorization theorem, $T = \sum_{i=1}^{n} Y_i$ sufficient for p. The conditional distribution $P(Y|T)$ is free of p, and free of μ as well. So $T = \sum_{i=1}^{n} Y_i$ is sufficient for μ.

(c) Since $T = \sum_{i=1}^{n} Y_i \sim \text{Bin}(n, p)$, the distribution family $\{\text{Binomial}(n, p)\}$ is complete. So T is a complete statistic.

(d) For any $\mu_2 > \mu_1$, we have $p_2 = \Phi(\mu_2) > p_1 = \Phi(\mu_1)$ and

$$f(y|\mu_2) = \left\{ \begin{array}{ll} p_2 - p_1 & \text{if } 1 \leq y < n \left(1 - \frac{p_2}{p_1} \right) \\ p_1 & \text{otherwise} \end{array} \right\} \left(\frac{1 - p_2}{1 - p_1} \right)^n,$$

which is non-decreasing in T. Define $p_0 = \Phi(\mu_0)$. By Karlin-Rubin theorem, the size α test is: reject H_0 if $T > t_0$, where t_0 is chosen such that

$$P_{p_0}(T > t_0) = \alpha.$$

Using the normal approximate $T \sim \text{N}(np_0, np_0(1-p_0))$. We can get $t_0 = np_0 + z_{\alpha} \sqrt{np_0(1-p_0)}$.

1